动态规划day35|1049. 最后一块石头的重量 II(等效转换得很巧妙)、494. 目标和(超重要!!背包的本质)、474. 一和零(多维控制)

news2024/9/22 13:31:44

动态规划day35|1049. 最后一块石头的重量 II、494. 目标和、一和零

  • 1049. 最后一块石头的重量 II
  • 494. 目标和
  • 474. 一和零

1049. 最后一块石头的重量 II

有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。

每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 xy,且 x <= y。那么粉碎的可能结果如下:

  • 如果 x == y,那么两块石头都会被完全粉碎;
  • 如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x

最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0

示例 1:

输入:stones = [2,7,4,1,8,1]
输出:1
解释:
组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。

示例 2:

输入:stones = [31,26,33,21,40]
输出:5

提示:

  • 1 <= stones.length <= 30
  • 1 <= stones[i] <= 100
class Solution {
public:
    int lastStoneWeightII(vector<int>& stones) {
        int sum=0;
        for(int i=0;i<stones.size();i++)
            sum+=stones[i];
        int target=sum/2;
        vector<int> dp(1501,0);
        for(int i=0;i<stones.size();i++)
            for(int j=target;j>=stones[i];j--)
                dp[j]=max(dp[j],dp[j-stones[i]]+stones[i]);
        return sum-dp[target]*2;
    }
};

本题的思路即等效转换是最难的,里面使用背包的过程反而不难,只要注意一下dp数组初始化的大小就行了

等效转换思路:本题属于优化类问题,我们可以联想到01背包。我们把整个集合平分成2份,保证2份的各自的元素和几乎相等或者说是和最为接近的两个子集。这样这两个子集一旦相减,最后的结果也就等效于最后一个石头的最小重量了。

494. 目标和

给你一个非负整数数组 nums 和一个整数 target

向数组中的每个整数前添加 '+''-' ,然后串联起所有整数,可以构造一个 表达式

  • 例如,nums = [2, 1] ,可以在 2 之前添加 '+' ,在 1 之前添加 '-' ,然后串联起来得到表达式 "+2-1"

返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

示例 1:

输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3

示例 2:

输入:nums = [1], target = 1
输出:1

提示:

  • 1 <= nums.length <= 20
  • 0 <= nums[i] <= 1000
  • 0 <= sum(nums[i]) <= 1000
  • -1000 <= target <= 1000
class Solution {
public:
    int findTargetSumWays(vector<int>& nums, int target) {
        int sum=0;
        for(int i=0;i<nums.size();i++)
            sum+=nums[i];
        if((sum+target)%2==1)
        return 0;
        if(abs(target)>sum)
        return 0;
        int bagSize=(sum+target)/2;
        vector<vector<int>> dp(nums.size(),vector<int>(bagSize+1,0));
        dp[0][0]=1;
        if(bagSize>=nums[0])
        dp[0][nums[0]]=1;
        int zeroNum=0;
        for(int i=0;i<nums.size();i++)
        {
            if(nums[i]==0)
            zeroNum++;
            dp[i][0]=(int)pow(2.0,zeroNum);
        }
        for(int i=1;i<nums.size();i++)
            for(int j=1;j<=bagSize;j++)
                if(j<nums[i]) 
                dp[i][j]=dp[i-1][j];
                else
                dp[i][j]=dp[i-1][j]+dp[i-1][j-nums[i]];
        return dp[nums.size()-1][bagSize];
    }
};

使用二维背包,更容易理解一些

难点:

  • 等效转换:将原集合分成两个子集,代表一正一负,二者相加是sum,相减是target,由此可得出正子集的和为(sum+target)/2。所以将问题转化为:在原来的集合中找,使得他们相加为(sum+target)/2,问这有多少种情况。这样的话我们就可以用01背包了:背包容量为(sum+target)/2,在这群物品里面任意挑,装满背包的方法有多少种?
  • 和最大价值和问题的比较:这种背包思路和以往的不一样,不讨论物品的价值。之前是不求装满,但求价值和最大;而这里是必须要装满背包,然后求出有多少种装满的方法。最大价值和的问题里面可能出现重量小但是价值大或者重量大但是价值小的情况,所以在决定放不放的时候我们需要进行比较(即max方法),每次都是得出最优的dp [i] [j],然后动态规划下去;而这里求的是装满背包的方法数问题,问题来了,既然dp数组的含义都不一样,那我们为什么可以套用01背包的框架呢?这就是涉及到背包的本质了。
  • 背包的本质:背包问题,本质上就是在一个数组内求特定和问题。只要我们需要在一个数组内求特定和,那么这个特定和就是背包容量,背包内的元素都是在这个数组里面找的。只要满足这个情境,就可以套用01背包的框架!但是不是死板的,需要灵活理解。而且这个仅仅是解决问题的基础,还要根据不同题目做出变化
  • 尽管都是背包,但dp数组的意义是不断变化的。意义不同,递推公式就不同。但是任然保留了主体框架不变。这里的求方法数,肯定是需要加在一起的,而不是去最大值:dp [i] [j]=dp [i-1] [j]+dp[i-1] [j-nums[i]];

易错点:

  • 剪枝:
if((sum+target)%2==1)
        return 0;
        if(abs(target)>sum)
        return 0;

当这个和不是整数或者大于sum时都不行

  • 横向初始化:dp [0] [0]=1; 只有当容量恰好等于nums[i]时,即dp [0] [nums[0]]=1;(此时最大容量>=nums[0]),其他都为0

  • 竖向初始化:即dp [i] [0],显然为1。但是,当nums[i]为0时,我们就需要另外考虑了,即:

for(int i=0;i<nums.size();i++)
          {
              if(nums[i]==0)
              zeroNum++;
              dp[i][0]=(int)pow(2.0,zeroNum);
          }

有几个0,那么就有2的几次方个方法

  • 返回值;我们要知道dp数组的含义:装满背包的方法数,所以只要输入我们要求的背包容量、物品数,然后直接返回dp即可,即:
  return dp[nums.size()-1][bagSize];

474. 一和零

给你一个二进制字符串数组 strs 和两个整数 mn

请你找出并返回 strs 的最大子集的长度,该子集中 最多m0n1

如果 x 的所有元素也是 y 的元素,集合 x 是集合 y子集

示例 1:

输入:strs = [“10”, “0001”, “111001”, “1”, “0”], m = 5, n = 3
输出:4
解释:最多有 5 个 0 和 3 个 1 的最大子集是 {“10”,“0001”,“1”,“0”} ,因此答案是 4 。
其他满足题意但较小的子集包括 {“0001”,“1”} 和 {“10”,“1”,“0”} 。{“111001”} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。

示例 2:

输入:strs = [“10”, “0”, “1”], m = 1, n = 1
输出:2
解释:最大的子集是 {“0”, “1”} ,所以答案是 2 。

提示:

  • 1 <= strs.length <= 600
  • 1 <= strs[i].length <= 100
  • strs[i] 仅由 '0''1' 组成
  • 1 <= m, n <= 100
class Solution {
public:
    int findMaxForm(vector<string>& strs, int m, int n) {
        vector<vector<int>> dp(m+1,vector<int>(n+1,0));
        for(string str:strs)
        {
            int x=0,y=0;
            for(char c:str)
            {   
                if(c=='0') x++;
                else y++;
            }
            for(int i=m;i>=x;i--)
                for(int j=n;j>=y;j--)
                    dp[i][j]=max(dp[i][j],dp[i-x][j-y]+1);
        }
        return dp[m][n];
    }
};

虽然是二维数组,本质上还是一维背包,只不过背包有两个维度的控制。需要注意的是,dp数组的含义是背包内元素的个数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2155167.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

springboot实战学习笔记(5)(用户登录接口的主逻辑)

接着上篇博客学习。上篇博客是已经基本完成用户模块的注册接口的开发以及注册时的参数合法性校验。具体往回看了解的链接如下。 springboot实训学习笔记&#xff08;4&#xff09;(Spring Validation参数校验框架、全局异常处理器)-CSDN博客文章浏览阅读576次&#xff0c;点赞7…

[云服务器13] 如何正确选择云服务器?

【非广告&#xff0c;仅提供建议&#xff0c;没有强制消费引导】 这期我们不讲搭建教程了&#xff0c;因为我想到前面12篇的教程&#xff0c;有关套餐配置的教程好像都有点敷衍…… 所以这期我们主要来说一说服务器的配置选择和不同配置的应用场景。 网站: 雨云 打开后&…

Cisco 基础网络汇总

⭕个人主页 可惜已不在 ⭕可以分享给身边有需要的人 ⭕有用的话就留下一个三连吧 目录 前言: 一.网络及网络设备认识 二. 二层网络 三. 生成树、端口 四. 三层网络 五.访问控制 六.NAT 七.DHCP 八.PPP 九.帧中继 十.热备份 十一.综合实验 十二.WLAN 十三.Cisco P…

Compiler Explorer 开源项目-在线编译器网站

Compiler Explorer 开源项目&#xff0c;一个交互式编译器探索网站。在 C、C、C♯、F♯、Rust、Go、D、Haskell、Swift、Pascal、ispc、Python、Java 或其他 30 多种支持的语言组件中编辑代码&#xff0c;并实时查看不同编译器&#xff08;包括不同cpu架构&#xff09;编译后的…

STM32—MPU6050

1.MPU6050简介 MPU6050是一个6轴姿态传感器可以测量芯片自身X、Y、Z轴的加速度、角速度参数&#xff0c;通过数据融合&#xff0c;可进一步得到姿态角&#xff0c;常应用于平衡车、飞行器等需要检测自身姿态的场景3轴加速度计(Accelerometer&#xff1a;测量X、Y、Z轴的加速度3…

构建未来企业的理论基石:业务能力建模指南的深度解析与战略实施框架

数字化转型已经成为全球企业的战略焦点&#xff0c;在这个过程中&#xff0c;如何有效地将复杂的业务需求、技术架构和市场变化结合&#xff0c;形成具备长期竞争力的企业能力框架&#xff0c;是企业成败的关键。《业务能力指南》提供了一套经过验证的理论体系&#xff0c;帮助…

数字图像面积计算一般方法及MATLAB实现

一、引言 在数字图像处理中&#xff0c;经常需要获取感兴趣区域的面积属性&#xff0c;下面给出图像处理的一般步骤。 1.读入的彩色图像 2.将彩色图像转化为灰度图像 3.灰度图像转化为二值图像 4.区域标记 5.对每个区域的面积进行计算和显示 二、程序代码 %面积计算 cle…

《COMMA: Co-articulated Multi-Modal Learning》中文校对版

系列论文研读目录 文章目录 系列论文研读目录摘要导言相关工作视觉语言模型提示学习视觉语言模型中的提示学习 方法准备工作提议方法 实验基准设定基础到新的概括跨数据集传输消融实验 结论 摘要 经过预训练的大规模视觉语言模型&#xff08;如CLIP&#xff09;已经在一系列下…

PyQt5 导入ui文件报错 AttributeError: type object ‘Qt‘ has no attribute

问题描述&#xff1a; 利用 PyQt5 编写可视化界面是较为普遍的做法&#xff0c;但是使用全新UI版本的 Pycharm 修改之前正常的UI文件时&#xff0c;在没有动其他代码的情况下发现出现以下报错 AttributeError: type object Qt has no attribute Qt::ContextMenuPolicy::Defaul…

BFS 解决多源最短路问题

文章目录 多源BFS542. 01 矩阵题目解析算法原理代码实现 1020. 飞地的数量题目解析算法原理 1765. 地图中的最高点题目解析算法原理代码实现 1162. 地图分析题目解析算法原理代码实现 多源BFS 单源最短路&#xff1a; 一个起点、一个终点 多源最短路&#xff1a; 可以多个起点…

Apache ZooKeeper 及 Curator 使用总结

1. 下载 官网地址&#xff1a;Apache ZooKeeper 点击下载按钮 选择对应的版本进行下载 2. 使用 1、解压 tar -zxf apache-zookeeper-3.9.2-bin.tar.gz2、复制配置文件&#xff0c;有一个示例配置文件 conf/zoo_sample.cfg&#xff0c;此文件不能生效&#xff0c;需要名称为…

LeetCode_sql_day31(1384.按年度列出销售总额)

目录 描述 1384.按年度列出销售总额 数据准备 分析 法一 法二 代码 总结 描述 1384.按年度列出销售总额 Product 表&#xff1a; ------------------------ | Column Name | Type | ------------------------ | product_id | int | | product_name | var…

将sqlite3移植到arm开发板上:

一、下载源代码 sqlite3网址&#xff1a;https://www.sqlite.org/download.html 下载&#xff1a;sqlite-autoconf-3460100.tar.gz 二、解压 在Linux家目录下创建一个sqlite3文件夹&#xff0c;将压缩包复制到该文件夹下&#xff0c;再在该目录下打开一个终端&#xff0c;执行…

【机器学习】--- 决策树与随机森林

文章目录 决策树与随机森林的改进&#xff1a;全面解析与深度优化目录1. 决策树的基本原理2. 决策树的缺陷及改进方法2.1 剪枝技术2.2 树的深度控制2.3 特征选择的优化 3. 随机森林的基本原理4. 随机森林的缺陷及改进方法4.1 特征重要性改进4.2 树的集成方法优化4.3 随机森林的…

7-50 畅通工程之局部最小花费问题 (kruskal)

输入样例: 4 1 2 1 1 1 3 4 0 1 4 1 1 2 3 3 0 2 4 2 1 3 4 5 0输出样例: 3 代码&#xff1a; #include<iostream> #include<queue> using namespace std; const int N110; struct node{int x,y,w;bool operator <(const node &n1)const{if(wn1.w) retur…

4 html5 web components原生组件详细教程

web components 前面我们已经介绍过&#xff0c;这一期我们就来讲一讲具体用法和这其中的关键只是点&#xff1a; 1 基本使用 如果我们想实现一个封装的原生组件&#xff0c;那就离不开使用js去封装&#xff0c;这里主要就是基于HTMLElement这个类&#xff0c;去创建创建一个…

【HarmonyOS】深入理解@Observed装饰器和@ObjectLink装饰器:嵌套类对象属性变化

【HarmonyOS】深入理解Observed装饰器和ObjectLink装饰器&#xff1a;嵌套类对象属性变化 前言 之前就Observed和ObjectLink写过一篇讲解博客【HarmonyOS】 多层嵌套对象通过ObjectLink和Observed实现渲染更新处理&#xff01; 其中就Observe监听类的使用&#xff0c;Object…

prometheus监控linux虚拟机

前提条件已安装好prometheus和grafana&#xff0c;如果未安装请移步到docker部署prometheus 安装部署Prometheus,docker安装grafana安装部署Grafana。 1.二进制部署node-exporter采集器 2.1 采集器node-exporter下载 链接&#xff1a;https://pan.baidu.com/s/1hDmckSSl5X36…

【算法】BFS系列之 拓扑排序

【ps】本篇有 3 道 leetcode OJ。 目录 一、算法简介 二、相关例题 1&#xff09;课程表 .1- 题目解析 .2- 代码编写 2&#xff09;课程表 II .1- 题目解析 .2- 代码编写 3&#xff09;火星词典 .1- 题目解析 .2- 代码编写 一、算法简介 【补】图的基本概念 &#…

本地提权【笔记总结】

文章目录 服务命令at命令提权介绍适用版本复现 sc命令提权介绍适用版本复现 ps应用程序提权复现 进程注入进程迁移注入介绍条件复现 MSF自动化注入介绍getsystem原理 复现 MSF令牌窃取介绍复现 烂土豆提权介绍适用版本复现 UAC绕过介绍复现使用ask模块绕过使用bypassuac_sluihi…