基于BiGRU+Attention实现风力涡轮机发电量多变量时序预测(PyTorch版)

news2025/1/12 2:52:08

风力发电组
前言

系列专栏:【深度学习:算法项目实战】✨︎
涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记忆、自然语言处理、深度强化学习、大型语言模型和迁移学习。

随着全球能源结构的不断转型和可持续发展战略的深入实施,风能作为一种清洁、可再生的能源,其在全球能源供应中的地位日益凸显。风力涡轮机作为风能利用的主要设备,其发电量的准确预测对于电力系统的稳定运行、优化调度以及风电的并网消纳具有重要意义。然而,由于风能的间歇性和不稳定性,风力涡轮机的发电量预测成为了一个极具挑战性的任务。

近年来,深度学习技术在时间序列预测领域展现出了强大的潜力,特别是循环神经网络(RNN)及其变体,如长短期记忆网络(LSTM)和门控循环单元(GRU),在处理序列数据方面表现出色。双向门控循环单元(BiGRU)作为GRU的一种扩展,通过同时考虑序列数据中的过去和未来信息,进一步提高了模型捕捉长期依赖关系的能力。此外,注意力机制(Attention)的引入,使得模型能够动态地调整不同时间步长输入特征的权重,从而更加关注对预测结果影响较大的关键信息。

基于上述背景,本文提出了基于BiGRU+Attention的风力涡轮机发电量时序预测模型,旨在通过结合BiGRU和Attention机制的优势,提高风力涡轮机发电量预测的准确性和效率。该模型不仅能够捕捉风力发电量数据中的时序依赖关系,还能通过注意力机制关注对预测结果更为重要的输入特征,从而在复杂多变的风电环境中实现高精度的预测。

本文首先介绍了研究背景与意义,概述了BiGRU和Attention机制的基本原理及其在风力涡轮机发电量预测中的应用潜力。随后,详细描述了模型的构建与训练过程,包括数据收集与预处理、特征提取、时间序列建模、预测输出以及模型训练与性能评估等关键步骤。通过实际案例分析和实验结果展示,验证了该模型在风力涡轮机发电量预测中的有效性和优越性。

基于BiGRU+Attention实现风力涡轮机发电量时序预测

  • 1. 数据集介绍
  • 2. 数据预处理
  • 3. 数据可视化
    • 3.1 数据相关性
  • 4. 特征工程
    • 4.1 特征缩放(归一化)
    • 4.2 构建时间序列数据
    • 4.3 数据集划分
    • 4.4 数据集张量
  • 5. 构建时序模型(TSF)
    • 5.1 构建BiGRU_Attention模型
    • 5.2 定义模型、损失函数与优化器
    • 5.3 模型概要
  • 6. 模型训练与可视化
    • 6.1 定义训练与评估函数
    • 6.2 绘制训练与验证损失曲线
  • 7. 模型评估与可视化
    • 7.1 构建预测函数
    • 7.2 验证集预测
    • 7.3 回归拟合图
    • 7.4 评估指标

1. 数据集介绍

在风力涡轮机中,Scada 系统测量并保存风速、风向、发电量等数据,时间间隔为 10 分钟。该文件取自土耳其一台正在发电的风力涡轮机的 scada 系统。原数据英文及解释如下:

  • Date/Time (for 10 minutes intervals)
  • LV ActivePower (kW): The power generated by the turbine for that moment
  • Wind Speed (m/s): The wind speed at the hub height of the turbine (the wind speed that turbine use for electricity generation)
  • Theoretical_Power_Curve (KWh): The theoretical power values that the turbine generates with that wind speed which is given by the turbine manufacturer
  • Wind Direction (°): The wind direction at the hub height of the turbine (wind turbines turn to this direction automaticly)

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error, \
                            mean_absolute_percentage_error, \
                            mean_squared_error, root_mean_squared_error, \
                            r2_score

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import TensorDataset, DataLoader, Dataset
from torchinfo import summary

np.random.seed(0)
data = pd.read_csv("T1.csv")
data.head(10).style.background_gradient(cmap='bone')

数据信息

2. 数据预处理

现在,我们使用 pandas.to_datetime 函数,将日期解析为时间数据类型

print(type(data['LV ActivePower (kW)'].iloc[0]),type(data['Date/Time'].iloc[0]))

# Let's convert the data type of timestamp column to datatime format
data['Date/Time'] = pd.to_datetime(data['Date/Time'],format='%d %m %Y %H:%M')
print(type(data['LV ActivePower (kW)'].iloc[0]),type(data['Date/Time'].iloc[0]))

cond_1 = data['Date/Time'] >= '2018-01-01 00:00:00'
cond_2 = data['Date/Time'] <= '2018-01-07 23:59:59'
data = data[cond_1 & cond_2]
print(data.shape)
<class 'numpy.float64'> <class 'str'>
<class 'numpy.float64'> <class 'pandas._libs.tslibs.timestamps.Timestamp'>
(987, 5)

3. 数据可视化

3.1 数据相关性

使用 data.corr() 计算相关系数矩阵

correlation = data.corr()
print(correlation['LV ActivePower (kW)'].sort_values(ascending=False))
LV ActivePower (kW)              1.000000
Theoretical_Power_Curve (KWh)    0.996930
Wind Speed (m/s)                 0.965048
Wind Direction (°)               0.217183
Date/Time                       -0.028100
Name: LV ActivePower (kW), dtype: float64
plt.figure(figsize=(10, 8))  # 设置图片大小
sns.heatmap(correlation, annot=True, cmap=sns.cubehelix_palette(dark=.20, light=.95, as_cmap=True), linewidths=0.5)
plt.show()

相关性
很明显,LV ActivePower (kW)Theoretical_Power_Curve (KWh)Wind Speed (m/s) 存在强相关性

4. 特征工程

4.1 特征缩放(归一化)

StandardScaler()函数将数据的特征值转换为符合正态分布的形式,它将数据缩放到均值为0,‌标准差为1的区间‌。在机器学习中,StandardScaler()函数常用于不同尺度特征数据的标准化,以提高模型的泛化能力。

# 使用选定的特征来训练模型
features = data.drop('Date/Time', axis=1)
target = data['LV ActivePower (kW)'].values.reshape(-1, 1)
# 创建 StandardScaler实例,对特征进行拟合和变换,生成NumPy数组
scaler = StandardScaler()
features_scaled = scaler.fit_transform(features)
target_scaled = scaler.fit_transform(target)
print(features_scaled.shape, target_scaled.shape)

4.2 构建时间序列数据

我们创建一个时间序列数据,时间步 time_steps 假设设置为10

time_steps = 10
X_list = []
y_list = []

for i in range(len(features_scaled) - time_steps):
    X_list.append(features_scaled[i:i+time_steps])
    y_list.append(target_scaled[i+time_steps])

X = np.array(X_list) # [samples, time_steps, num_features]
y = np.array(y_list) # [target]
samples, time_steps, num_features = X.shape

4.3 数据集划分

train_test_split 函数将数组或矩阵随机分成训练子集和测试子集。

X_train, X_valid,\
    y_train, y_valid = train_test_split(X, y, 
                                        test_size=0.2, 
                                        random_state=45,
                                        shuffle=False)
print(X_train.shape, X_valid.shape, y_train.shape, y_valid.shape)

以上代码中 random_state=45 设置了随机种子,以确保每次运行代码时分割结果的一致性。shuffle=False 表示在分割数据时不进行随机打乱。如果设置为True(默认值),则会在分割之前对数据进行随机打乱,这样可以增加数据的随机性,但时间序列数据具有连续性,所以设置为False

4.4 数据集张量

# 将 NumPy数组转换为 tensor张量
X_train_tensor = torch.from_numpy(X_train).type(torch.Tensor)
X_valid_tensor = torch.from_numpy(X_valid).type(torch.Tensor)
y_train_tensor = torch.from_numpy(y_train).type(torch.Tensor).view(-1, 1)
y_valid_tensor = torch.from_numpy(y_valid).type(torch.Tensor).view(-1, 1)

print(X_train_tensor.shape, X_valid_tensor.shape, y_train_tensor.shape, y_valid_tensor.shape)

以上代码通过 train_test_split 划分得到的训练集和验证集中的特征数据 X_trainX_valid 以及标签数据 y_trainy_validnumpy 数组转换为 PyTorch 的张量(tensor)类型。.type(torch.Tensor) 确保张量的数据类型为标准的 torch.Tensor 类型,.view(-1, 1) 对张量进行维度调整

class DataHandler(Dataset):
    def __init__(self, X_train_tensor, y_train_tensor, X_valid_tensor, y_valid_tensor):
        self.X_train_tensor = X_train_tensor
        self.y_train_tensor = y_train_tensor
        self.X_valid_tensor = X_valid_tensor
        self.y_valid_tensor = y_valid_tensor
        
    def __len__(self):
        return len(self.X_train_tensor)

    def __getitem__(self, idx):
        sample = self.X_train_tensor[idx]
        labels = self.y_train_tensor[idx]
        return sample, labels
        
    def train_loader(self):
        train_dataset = TensorDataset(self.X_train_tensor, self.y_train_tensor)
        return DataLoader(train_dataset, batch_size=32, shuffle=True)

    def valid_loader(self):
        valid_dataset = TensorDataset(self.X_valid_tensor, self.y_valid_tensor)
        return DataLoader(valid_dataset, batch_size=32, shuffle=False)

在上述代码中,定义了一个名为 DataHandler 的类,它继承自 torch.utils.data.Dataset
__init__ 方法用于接收数据和标签。__len__ 方法返回数据集的长度。__getitem__ 方法根据给定的索引 idx 返回相应的数据样本和标签。

data_handler = DataHandler(X_train_tensor, y_train_tensor, X_valid_tensor, y_valid_tensor)
train_loader = data_handler.train_loader()
valid_loader = data_handler.valid_loader()

5. 构建时序模型(TSF)

5.1 构建BiGRU_Attention模型

class BiGRU_Attention(nn.Module):
    def __init__(self, 
                 input_dim, 
                 hidden_dim, 
                 num_layers, 
                 output_dim, 
                 num_heads
                ):
        super(BiGRU_Attention, self).__init__()
        self.hidden_dim = hidden_dim
        self.num_layers = num_layers
        self.bigru = nn.GRU(
            input_dim, 
            hidden_dim, 
            num_layers=num_layers, 
            batch_first=True, 
            bidirectional=True)
        self.attention = nn.MultiheadAttention(
            embed_dim=hidden_dim*2, 
            num_heads=num_heads, 
            batch_first=True)
        self.dropout = nn.Dropout(p=0.5)
        self.fc = nn.Linear(hidden_dim*2, output_dim)

    def forward(self, x):
        # x: [batch_size, seq_len, input_dim]
        # h0: [num_layers * num_directions, batch_size, hidden_dim]
        h0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_dim).to(x.device)
        out, _ = self.bigru(x, h0)
        drop_gruout = self.dropout(out)
        # 注意力层
        attn_output, _ = self.attention(drop_gruout, drop_gruout, drop_gruout)
        drop_output = self.dropout(attn_output[:, -1, :])
        # 全连接层
        out = self.fc(drop_output)
        return out

5.2 定义模型、损失函数与优化器

model = BiGRU_Attention(input_dim = num_features,
                        hidden_dim = 8,
                        num_layers = 2, 
                        output_dim = 1, 
                        num_heads = 16)
criterion_mse = nn.MSELoss()  # 定义均方误差损失函数
criterion_mae = nn.L1Loss()  # 定义平均绝对误差损失
optimizer = torch.optim.Adam(model.parameters(), lr=1e-04) # 定义优化器

nn.L1Loss() 是 PyTorch 中的一个损失函数,用于计算模型预测值和真实值之间的平均绝对误差(Mean Absolute Error, MAE)

5.3 模型概要

# batch_size, seq_len(time_steps), input_size(in_channels)
summary(model, (32, time_steps, num_features)) 
==========================================================================================
Layer (type:depth-idx)                   Output Shape              Param #
==========================================================================================
BiGRU_Attention                          [32, 1]                   --
├─GRU: 1-1                               [32, 10, 16]              1,920
├─Dropout: 1-2                           [32, 10, 16]              --
├─MultiheadAttention: 1-3                [32, 10, 16]              1,088
├─Dropout: 1-4                           [32, 16]                  --
├─Linear: 1-5                            [32, 1]                   17
==========================================================================================
Total params: 3,025
Trainable params: 3,025
Non-trainable params: 0
Total mult-adds (Units.MEGABYTES): 0.61
==========================================================================================
Input size (MB): 0.01
Forward/backward pass size (MB): 0.04
Params size (MB): 0.01
Estimated Total Size (MB): 0.05
==========================================================================================

6. 模型训练与可视化

6.1 定义训练与评估函数

def train(model, iterator, optimizer):
    epoch_loss_mse = 0
    epoch_loss_mae = 0

    model.train()  # 确保模型处于训练模式
    for batch in iterator:
        optimizer.zero_grad()  # 清空梯度
        inputs, targets = batch  # 获取输入和目标值
        outputs = model(inputs)  # 前向传播

        loss_mse = criterion_mse(outputs, targets)  # 计算损失
        loss_mae = criterion_mae(outputs, targets)

        combined_loss = loss_mse + loss_mae  # 可以根据需要调整两者的权重

        combined_loss.backward()
        optimizer.step()

        epoch_loss_mse += loss_mse.item()  # 累计损失
        epoch_loss_mae += loss_mae.item()

    average_loss_mse = epoch_loss_mse / len(iterator)  # 计算平均损失
    average_loss_mae = epoch_loss_mae / len(iterator)

    return average_loss_mse, average_loss_mae

上述代码定义了一个名为 train 的函数,用于训练给定的模型。它接收模型、数据迭代器、优化器作为参数,并返回训练过程中的平均损失。

def evaluate(model, iterator):
    epoch_loss_mse = 0
    epoch_loss_mae = 0

    model.eval()  # 将模型设置为评估模式,例如关闭 Dropout 等
    with torch.no_grad():  # 不需要计算梯度
        for batch in iterator:
            inputs, targets = batch
            outputs = model(inputs)  # 前向传播

            loss_mse = criterion_mse(outputs, targets)  # 计算损失
            loss_mae = criterion_mae(outputs, targets)

            epoch_loss_mse += loss_mse.item()  # 累计损失
            epoch_loss_mae += loss_mae.item()

    return epoch_loss_mse / len(iterator), epoch_loss_mae / len(iterator)

上述代码定义了一个名为 evaluate 的函数,用于评估给定模型在给定数据迭代器上的性能。它接收模型、数据迭代器作为参数,并返回评估过程中的平均损失。这个函数通常在模型训练的过程中定期被调用,以监控模型在验证集或测试集上的性能。通过评估模型的性能,可以了解模型的泛化能力和训练的进展情况。

epoch = 500
train_mselosses = []
valid_mselosses = []
train_maelosses = []
valid_maelosses = []

for epoch in range(epoch):
    train_loss_mse, train_loss_mae = train(model, train_loader, optimizer)
    valid_loss_mse, valid_loss_mae = evaluate(model, valid_loader)
    
    train_mselosses.append(train_loss_mse)
    valid_mselosses.append(valid_loss_mse)
    train_maelosses.append(train_loss_mae)
    valid_maelosses.append(valid_loss_mae)
    
    print(f'Epoch: {epoch+1:02}, Train MSELoss: {train_loss_mse:.5f}, Train MAELoss: {train_loss_mae:.3f}, Val. MSELoss: {valid_loss_mse:.5f}, Val. MAELoss: {valid_loss_mae:.3f}')
Epoch: 01, Train MSELoss: 0.86945, Train MAELoss: 0.852, Val. MSELoss: 1.08921, Val. MAELoss: 0.997
Epoch: 02, Train MSELoss: 0.82845, Train MAELoss: 0.827, Val. MSELoss: 1.07914, Val. MAELoss: 0.992
Epoch: 03, Train MSELoss: 0.77970, Train MAELoss: 0.800, Val. MSELoss: 1.06364, Val. MAELoss: 0.984
Epoch: 04, Train MSELoss: 0.72964, Train MAELoss: 0.770, Val. MSELoss: 1.03752, Val. MAELoss: 0.971
Epoch: 05, Train MSELoss: 0.67883, Train MAELoss: 0.740, Val. MSELoss: 1.00662, Val. MAELoss: 0.954
******
Epoch: 496, Train MSELoss: 0.08508, Train MAELoss: 0.223, Val. MSELoss: 0.05806, Val. MAELoss: 0.203
Epoch: 497, Train MSELoss: 0.08262, Train MAELoss: 0.218, Val. MSELoss: 0.05554, Val. MAELoss: 0.195
Epoch: 498, Train MSELoss: 0.08714, Train MAELoss: 0.220, Val. MSELoss: 0.04519, Val. MAELoss: 0.168
Epoch: 499, Train MSELoss: 0.09767, Train MAELoss: 0.239, Val. MSELoss: 0.05352, Val. MAELoss: 0.191
Epoch: 500, Train MSELoss: 0.08566, Train MAELoss: 0.220, Val. MSELoss: 0.05005, Val. MAELoss: 0.183

6.2 绘制训练与验证损失曲线

# 绘制 MSE损失图
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(train_mselosses, label='Train MSELoss')
plt.plot(valid_mselosses, label='Validation MSELoss')
plt.xlabel('Epoch')
plt.ylabel('MSELoss')
plt.title('Train and Validation MSELoss')
plt.legend()
plt.grid(True)

# 绘制 MAE损失图
plt.subplot(1, 2, 2)
plt.plot(train_maelosses, label='Train MAELoss')
plt.plot(valid_maelosses, label='Validation MAELoss')
plt.xlabel('Epoch')
plt.ylabel('MAELoss')
plt.title('Train and Validation MAELoss')
plt.legend()
plt.grid(True)

plt.show()

损失曲线

7. 模型评估与可视化

7.1 构建预测函数

定义预测函数prediction 方便调用

# 定义 prediction函数
def prediction(model, iterator): 
    all_targets = []
    all_predictions = []

    model.eval()
    with torch.no_grad():
        for batch in iterator:
            inputs, targets = batch
            predictions = model(inputs)
            
            all_targets.extend(targets.numpy())
            all_predictions.extend(predictions.numpy())
    return all_targets, all_predictions

7.2 验证集预测

# 模型预测
targets, predictions = prediction(model, valid_loader)
denormalized_targets = scaler.inverse_transform(targets)
denormalized_predictions = scaler.inverse_transform(predictions)

targets 是经过标准化处理后的目标值数组,predictions 是经过标准化处理后的预测值数组。scalerStandardScaler() 标准化类的实例,inverse_transform 方法会将标准化后的数组还原为原始数据的尺度,即对预测值进行反标准化操作。

# Visualize the data
plt.figure(figsize=(12,6))
plt.style.use('_mpl-gallery')
plt.title('Comparison of validation set prediction results')
plt.plot(denormalized_targets, color='blue',label='Actual Value')
plt.plot(denormalized_predictions, color='orange', label='Valid Value')
plt.legend()
plt.show()

验证集预测

7.3 回归拟合图

plt.figure(figsize=(5, 5), dpi=100)
sns.regplot(x=denormalized_targets, y=denormalized_predictions, scatter=True, marker="x", color='blue',line_kws={'color': 'red'})
plt.show()

回归拟合图

7.4 评估指标

这里我们将通过调用 sklearn.metrics 模块中的 mean_absolute_error mean_absolute_percentage_error mean_squared_error root_mean_squared_error r2_score 函数来评估模型性能

mae = mean_absolute_error(targets, predictions)
print(f"MAE: {mae:.4f}")

mape = mean_absolute_percentage_error(targets, predictions)
print(f"MAPE: {mape * 100:.4f}%")

mse = mean_squared_error(targets, predictions)
print(f"MSE: {mse:.4f}")

rmse = root_mean_squared_error(targets, predictions)
print(f"RMSE: {rmse:.4f}")

r2 = r2_score(targets, predictions)
print(f"R²: {r2:.4f}")
MAE: 0.1893
MAPE: 58.1806%
MSE: 0.0519
RMSE: 0.2278: 0.9173

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2155386.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

37. Vector3与模型位置、缩放属性

本文章给通过组对象Group (opens new window)给大家讲解一下threejs层级模型或树结构的概念。 Group层级模型(树结构)案例 下面代码创建了两个网格模型mesh1、mesh2&#xff0c;通过THREE.Group类创建一个组对象group,然后通过add方法把网格模型mesh1、mesh2作为设置为组对象g…

【Godot4.3】GraphEdit全解析(1) - 基础介绍

概述 最早系统性的讲述Godot的GraphEdit和GraphNode的教程应该是Hi小胡的了&#xff0c;也有小伙伴已经设计出一些插件或小应用用于辅助自己的项目。或者更直观的你可以去看看B站的Godot的Visual Shader教程。 我是学了好几次&#xff0c;学完就忘了用&#xff0c;本篇是基于…

Java只有国人在搞了?

从Java诞生到现在&#xff0c;在全球一直属于最大的开发平台&#xff0c;拥有着世界上最多的开发者和最活跃的社区。你说Java只有国人在搞就有点过分了&#xff0c;Java中常用的主流框架全是外国人写的&#xff0c;虽说阿里也为Java做了很多贡献&#xff0c;但你还真没有资格说…

代码随想录Day 52|题目:101.孤岛的面积、102.沉没孤岛、103.水流问题、104.建造最大岛屿

提示&#xff1a;DDU&#xff0c;供自己复习使用。欢迎大家前来讨论~ 文章目录 图论part03题目一&#xff1a;101.孤岛的总面积解题思路DFS**BFS** 题目二&#xff1a;102. 沉没孤岛解题思路 题目三&#xff1a;103. 水流问题解题思路优化 题目四&#xff1a;104.建造最大岛屿…

Windows11+Microsoft MPI v10.1.3 安装配置记录

WindowsMicrosoft MPI v10.1.3 安装配置记录 MS-MPI 安装VS中进行配置属性管理器-添加新项目属性表VC目录-包含目录链接器-常规-附加库目录链接器-输入-附加依赖项 测试 某个项目需要MPI支持&#xff0c;在此记录MS MPI的安装配置过程。 MS-MPI 安装 在微软官网下载 两个都下…

去中心化的力量:探索Web3的分布式网络

Web3作为一种新兴的网络架构&#xff0c;代表了对互联网发展的一种探索。与传统的中心化互联网模式相比&#xff0c;Web3致力于通过去中心化的方式构建更加开放和透明的数字世界。本文将探讨Web3的核心理念、技术实现及其潜在应用。 一、去中心化的核心理念 Web3的去中心化理…

深度学习02-pytorch-06-张量的形状操作

在 PyTorch 中&#xff0c;张量的形状操作是非常重要的&#xff0c;可以让你灵活地调整和处理张量的维度和数据结构。以下是一些常用的张量形状函数及其用法&#xff0c;带有详细解释和举例说明&#xff1a; 1. reshape() 功能: 改变张量的形状&#xff0c;但不改变数据的顺序…

Stable Diffusion 使用详解(12)--- 设计师风格变换

目录 背景 seg模型&#xff08;语义分割&#xff09; 描述 原理 实战-装修风格变换 现代风格 欧式风格转换 提示词及相关参数设置 模型选择 seg cn 加持 效果 还能做点啥 问题 解决方法 出图效果 二次优化调整 二次出图效果 地中海风格转换 参数修改 效果 …

软硬件项目运维方案(Doc原件完整版套用)

1 系统的服务内容 1.1 服务目标 1.2 信息资产统计服务 1.3 网络、安全系统运维服务 1.4 主机、存储系统运维服务 1.5 数据库系统运维服务 1.6 中间件运维服务 2 运维服务流程 3 服务管理制度规范 3.1 服务时间 3.2 行为规范 3.3 现场服务支持规范 3.4 问题记录规范…

C++容器list底层迭代器的实现逻辑~list相关函数模拟实现

目录 1.两个基本的结构体搭建 2.实现push_back函数 3.关于list现状的分析&#xff08;对于我们如何实现这个迭代器很重要&#xff09; 3.1和string,vector的比较 3.2对于list的分析 3.3总结 4.迭代器类的封装 5.list容器里面其他函数的实现 6.个人总结 7.代码附录 1.两…

【C++ Primer Plus习题】17.1

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: #include <iostream> using namespace std;int main() {char …

移动登录页:让用户开启一段美好的旅程吧。

Hi,大家好&#xff0c;我是大千UI工场&#xff0c;移动登录页千千万&#xff0c;这里最好看&#xff0c;本期分享一批移动端的登录页面&#xff0c;供大家欣赏。 本次分享的是毛玻璃/3D风格的登录页。

【Unity设计模式】Unity MVC/MVP架构介绍,及MVC/MVP框架的简单应用

文章目录 什么是MVC&#xff1f;MVC眼花缭乱设计图MVP和MVC最经典的MVC的业务流程Unity MVC 框架示例1. 创建项目结构2. 实现模型3. 实现视图4. 实现控制器5. 使用示例 总结参考完结 什么是MVC&#xff1f; MVC自1982年被设计出来&#xff0c;至今都有着很大比重的使用率&…

前端项目代码开发规范及工具配置

在项目开发中&#xff0c;良好的代码编写规范是项目组成的重要元素。本文将详细介绍在项目开发中如何集成相应的代码规范插件及使用方法。 项目规范及工具 集成 EditorConfig集成 Prettier1. 安装 Prettier2. 创建 Prettier 配置文件3. 配置 .prettierrc4. 使用 Prettier 集成 …

python--基础语法(2)

1.顺序语句 默认情况下&#xff0c;Python的代码执行顺序是按照从上到下的顺序&#xff0c;依次执行的。 2.条件语句 条件语句能够表达“如果 ...否则 ...”这样的语义这构成了计算机中基础的逻辑判定条件语&#xff0c; 也叫做 分支语句。表示了接下来的逻辑可能有几种走向…

HOSTS文件劫持--导致笔记本网络卡顿

写在前面&#xff1a; 因为笔记本网速卡顿&#xff0c;去维修店维修网卡&#xff0c;网卡咱们测试都没有问题&#xff0c;一直吐槽售后服务一般。自己也装过几次系统了 点击任务栏中的搜索图标&#xff0c;输入"cmd"&#xff0c;点击"命令提示符"选择&qu…

笔记整理—内核!启动!—linux应用编程、网络编程部分(2)linux的文件管理策略

关于硬盘中的静态文件与inode&#xff1a;例如文件存储在扇区中&#xff0c;一个文件占用10个字节&#xff0c;一个扇区为512字节&#xff0c;这样的情况下一个扇区就只放了一个实际为10字节的文件&#xff0c;余下的502字节不可存放其他文件&#xff0c;因为扇区已经是可以访问…

C++入门(07)标准输入输出_cin

文章目录 4.cin4.1 基本功能4.2 常见数据类型的输入4.3 cin多项输入中的分隔符如果需要将空格作为输入的一部分读入 4.4 使用 cin 一次读取多个整数方法一方法二 接上一篇 cout C入门(07)标准输入输出_cout、缓冲、\n endl 4.cin 4.1 基本功能 C 标准输入 cin 是一个控制台输…

LLMs之MemLong:《MemLong: Memory-Augmented Retrieval for Long Text Modeling》翻译与解读

LLMs之MemLong&#xff1a;《MemLong: Memory-Augmented Retrieval for Long Text Modeling》翻译与解读 导读&#xff1a;MemLong 是一种新颖高效的解决 LLM 长文本处理难题的方法&#xff0c;它通过外部检索器获取历史信息&#xff0c;并将其与模型的内部检索过程相结合&…

IPsec-VPN中文解释

网络括谱图 IPSec-VPN 配置思路 1 配置IP地址 FWA:IP地址的配置 [FW1000-A]interface GigabitEthernet 1/0/0 [FW1000-A-GigabitEthernet1/0/0]ip address 10.1.1.1 24 //配置IP地址 [FW1000-A]interface GigabitEthernet 1/0/2 [FW1000-A-GigabitEthernet1/0/2]ip a…