效果:
代码:
import cv2
import numpy as np
from matplotlib import pyplot as plt
if __name__ == "__main__":
h = 10
w = 10
data = np.random.normal(0, 1, [h, w]) # sigma, 2*sigma, 3*sigma之间的数的比例分别为0.68, 0.96, 0.99
mask_new = data > 2
print(data)
print(np.sum(abs(data) < 1) / (h*w))
print(np.sum(data < 0) / (h * w))
mask_new = (mask_new * 255).astype(np.uint8)
mask_new[3:6, 4:6] = 255
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
a = cv2.dilate(mask_new, kernel) # 膨胀
b = cv2.erode(a, kernel) #腐蚀
closing = cv2.morphologyEx(mask_new, cv2.MORPH_CLOSE, kernel) # 先膨胀后腐蚀
opening = cv2.morphologyEx(mask_new, cv2.MORPH_OPEN, kernel) # 先腐蚀后膨胀
plt.figure()
plt.subplot(231)
plt.imshow(mask_new, cmap='gray')
plt.subplot(232)
plt.imshow(a, cmap='gray')
plt.subplot(233)
plt.imshow(b, cmap='gray')
plt.subplot(234)
plt.imshow(opening, cmap='gray')
plt.subplot(235)
plt.imshow(closing, cmap='gray')
plt.show()