kitti数据label的2d与3d坐标转为像素坐标方法与教程(代码实现)

news2024/11/16 1:38:29

文章目录

  • 前言
  • 一、kitti标签label坐标转换的主函数
    • 1、主函数调用代码
    • 2、数据格式示意图
    • 二、kitti数据获取
    • 1、图像获取
    • 2、label标签数据获取
    • 3、标定文件数据获取
  • 三、kitti标签坐标转换方法
    • 1、集成主函数-labels_boxes2pixel_in_image
    • 2、标签3d坐标转像素坐标-compute_box_3d(obj, calib.P)
      • 1、函数输入内容
      • 2、旋转角转换
      • 3、原点基准获取3d坐标(l w h)
      • 4、绕Y轴坐标旋转
      • 5、获得目标3d坐标
      • 6、3d坐标转像素坐标
  • 四、完整代码与结果现实
    • 1、结果现实
    • 2、完整代码

前言

kitti数据是一个通用数据,但里面标定文件或标签文件等相互关心很有可能把大家陷入其中。为此,本文分享kitti数据的label标签内容转换,特别是标签的3d坐标转换到图像像素坐标,这也是本文重点介绍内容。而本文与其它文章不太相同,我们不注重kitti原理介绍,而是使用代码将其转换,并给出完整代码。

一、kitti标签label坐标转换的主函数

1、主函数调用代码

先给出调用的主函数,然后在分别讲解,直接看代码如下:

if __name__ == '__main__':
    path = r'C:\Users\Administrator\Desktop\kitti_data\KITTI\training'
    index = '000008'
    calib_path = os.path.join(path, 'calib', index + '.txt')  # 获得标定文件
    image_2_path = os.path.join(path, 'image_2', index + '.png')  # 获得图像
    label_2_path = os.path.join(path, 'label_2', index + '.txt')  # 获得标签lebl
    img = get_image(image_2_path)  # 读取图像
    objects = read_label(label_2_path)  # 处理标签
    calib = Calibration(calib_path)  # 处理标定文件
    img_bbox2d, img_bbox3d, box3d_to_pixel2d = labels_boxes2pixel_in_image(img, objects, calib)  # 重点内容,集成转换

    cv2.imwrite('./bbox2d.png',img_bbox2d)
    cv2.imwrite('./bbox3d.png',img_bbox3d)

2、数据格式示意图

在这里插入图片描述

二、kitti数据获取

1、图像获取

因为要将其2d与3d坐标展现到图像中,需要获取图像数据,其代码如下:

def get_image(img_path):
    img = cv2.imread(img_path)
    return img

2、label标签数据获取

读取标签txt文件内容,将其每个目标内容赋值给Object3d类中,构建一个列表,如下:

# 读取label标签
def read_label(label_filename):
    lines = [line.rstrip() for line in open(label_filename)]
    objects = [Object3d(line) for line in lines]
    return objects

而Object类是对标签的解析,如下:

# 转换kitti数据标签labels
class Object3d(object):
    """ 3d object label """

    def __init__(self, label_file_line):
        data = label_file_line.split(" ")
        data[1:] = [float(x) for x in data[1:]]

        # extract label, truncation, occlusion
        self.type = data[0]  # 'Car', 'Pedestrian', ...
        self.truncation = data[1]  # truncated pixel ratio [0..1]
        self.occlusion = int(
            data[2]
        )  # 0=visible, 1=partly occluded, 2=fully occluded, 3=unknown
        self.alpha = data[3]  # object observation angle [-pi..pi]

        # extract 2d bounding box in 0-based coordinates
        self.xmin = data[4]  # left
        self.ymin = data[5]  # top
        self.xmax = data[6]  # right
        self.ymax = data[7]  # bottom
        self.box2d = np.array([self.xmin, self.ymin, self.xmax, self.ymax])

        # extract 3d bounding box information
        self.h = data[8]  # box height
        self.w = data[9]  # box width
        self.l = data[10]  # box length (in meters)
        self.t = (data[11], data[12], data[13])  # location (x,y,z) in camera coord.
        self.ry = data[14]  # yaw angle (around Y-axis in camera coordinates) [-pi..pi]

后面标签内容我不在解析了。

3、标定文件数据获取

其代码如下:

class Calibration(object):
    """ Calibration matrices and utils
        3d XYZ in <label>.txt are in rect camera coord.
        2d box xy are in image2 coord
        Points in <lidar>.bin are in Velodyne coord.

        y_image2 = P^2_rect * x_rect
        y_image2 = P^2_rect * R0_rect * Tr_velo_to_cam * x_velo
        x_ref = Tr_velo_to_cam * x_velo
        x_rect = R0_rect * x_ref

        P^2_rect = [f^2_u,  0,      c^2_u,  -f^2_u b^2_x;
                    0,      f^2_v,  c^2_v,  -f^2_v b^2_y;
                    0,      0,      1,      0]
                 = K * [1|t]

        image2 coord:
         ----> x-axis (u)
        |
        |
        v y-axis (v)

        velodyne coord:
        front x, left y, up z

        rect/ref camera coord:
        right x, down y, front z

        Ref (KITTI paper): http://www.cvlibs.net/publications/Geiger2013IJRR.pdf

        TODO(rqi): do matrix multiplication only once for each projection.
    """

    def __init__(self, calib_filepath, from_video=False):
        if from_video:
            calibs = self.read_calib_from_video(calib_filepath)
        else:
            calibs = self.read_calib_file(calib_filepath)
        # Projection matrix from rect camera coord to image2 coord
        self.P = calibs["P2"]
        self.P = np.reshape(self.P, [3, 4])
        # Rigid transform from Velodyne coord to reference camera coord
        self.V2C = calibs["Tr_velo_to_cam"]
        self.V2C = np.reshape(self.V2C, [3, 4])
        self.C2V = self.inverse_rigid_trans(self.V2C)
        # Rotation from reference camera coord to rect camera coord
        self.R0 = calibs["R0_rect"]
        self.R0 = np.reshape(self.R0, [3, 3])

        # Camera intrinsics and extrinsics
        self.c_u = self.P[0, 2]
        self.c_v = self.P[1, 2]
        self.f_u = self.P[0, 0]
        self.f_v = self.P[1, 1]
        self.b_x = self.P[0, 3] / (-self.f_u)  # relative
        self.b_y = self.P[1, 3] / (-self.f_v)

旋转可参考:
https://zhuanlan.zhihu.com/p/86223712

            1 -------- 0
           /|         /|
          2 -------- 3 .
          | |        | |
          . 5 -------- 4
          |/         |/
          6 -------- 7

三、kitti标签坐标转换方法

1、集成主函数-labels_boxes2pixel_in_image

我先给出坐标转换集成主函数,该函数实现了kitti标签2d与3d坐标转换为对应像素坐标实现方法,也将其kitti的标签2d坐标与3d转换坐标显示在图中,其代码如下:

def labels_boxes2pixel_in_image(img, objects, calib):
    """
    Show image with 2D bounding boxes
    :param img: 图像内容
    :param objects: label标签内容
    :param calib: 标定文件内容
    :return: img1, img2,box3d_to_pixel2d,第一个值是2d坐标图像,第二个值是3d坐标转到像素画的图像,第三个值是相机坐标与像素坐标对应点
    """

    img1 = np.copy(img)  # for 2d bbox
    img2 = np.copy(img)  # for 3d bbox
    # TODO: change the color of boxes
    box3d_to_pixel2d = {"corners_3d":[],"box3d_pts_2d":[]}
    for obj in objects:
        # 画2d坐标
        if obj.type == "DontCare":
            continue
        else:
            cv2.rectangle(img1,(int(obj.xmin),int(obj.ymin)),(int(obj.xmax), int(obj.ymax)),(0, 255, 0),2,)
            cv2.putText(img1, str(obj.type), (int(obj.xmin), int(obj.ymin)), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)

        # 这个非常重要,该代码就是将其label的3d坐标转为像素2d坐标关键函数
        box3d_pts_2d, corners_3d = compute_box_3d(obj, calib.P)
        box3d_to_pixel2d['corners_3d'].append(corners_3d)
        box3d_to_pixel2d['box3d_pts_2d'].append(box3d_pts_2d)
        if box3d_pts_2d is None:
            print("something wrong in the 3D box.")
            continue
        img2 = draw_projected_box3d(img2, box3d_pts_2d, color=(0, 255, 0))


    return img1, img2,box3d_to_pixel2d

在这个函数中只解读compute_box_3d(obj, calib.P)函数,其它画框啥的我不在说明了。

2、标签3d坐标转像素坐标-compute_box_3d(obj, calib.P)

1、函数输入内容

输入是kitti标签内容,已被类给实例化或处理了,输入是标定文件相机内参内容,calib.P是第二个相机内参。

2、旋转角转换

kitti标签最后一个数字是旋转角的转换,该角是绕y轴的旋转,其调用函数是R = roty(obj.ry)。至于该函数实现如下代码:

def roty(t):
    """ Rotation about the y-axis. """
    c = np.cos(t)
    s = np.sin(t)
    return np.array([[c, 0, s], [0, 1, 0], [-s, 0, c]])

不要问我为什么,请看坐标转换矩阵:
在这里插入图片描述
你也可以参考知乎:https://zhuanlan.zhihu.com/p/86223712

3、原点基准获取3d坐标(l w h)

假设XYZ坐标轴以(0,0,0)原点为中心,通过kitti标签的长宽高得到八个点实际坐标,如下代码:

 # 3d bounding box dimensions
    l = obj.l
    w = obj.w
    h = obj.h

    # 3d bounding box corners
    x_corners = [l / 2, l / 2, -l / 2, -l / 2, l / 2, l / 2, -l / 2, -l / 2]
    y_corners = [0, 0, 0, 0, -h, -h, -h, -h]
    z_corners = [w / 2, -w / 2, -w / 2, w / 2, w / 2, -w / 2, -w / 2, w / 2]

上面点坐标依次是下图数字编号顺序,如下:
在这里插入图片描述

4、绕Y轴坐标旋转

这个不在解释,如下代码直接np.dot实现旋转,如下:

# rotate and translate 3d bounding box
    corners_3d = np.dot(R, np.vstack([x_corners, y_corners, z_corners]))

5、获得目标3d坐标

旋转之后,直接加上标签XYZ坐标获取3d坐标,如下:

    corners_3d[0, :] = corners_3d[0, :] + obj.t[0]
    corners_3d[1, :] = corners_3d[1, :] + obj.t[1]
    corners_3d[2, :] = corners_3d[2, :] + obj.t[2]

6、3d坐标转像素坐标

该函数是3d坐标转像素坐标方法调用函数,如下:

# project the 3d bounding box into the image plane,相机坐标转像素坐标
    corners_2d = project_to_image(np.transpose(corners_3d), P)

该函数就是实现np.dot(P内参,3d坐标),我也不在解释,代码如下:

def project_to_image(pts_3d, P):
    """ Project 3d points to image plane.

    Usage: pts_2d = projectToImage(pts_3d, P)
      input: pts_3d: nx3 matrix
             P:      3x4 projection matrix
      output: pts_2d: nx2 matrix

      P(3x4) dot pts_3d_extended(4xn) = projected_pts_2d(3xn)
      => normalize projected_pts_2d(2xn)

      <=> pts_3d_extended(nx4) dot P'(4x3) = projected_pts_2d(nx3)
          => normalize projected_pts_2d(nx2)
    """
    n = pts_3d.shape[0]
    pts_3d_extend = np.hstack((pts_3d, np.ones((n, 1))))
    # print(('pts_3d_extend shape: ', pts_3d_extend.shape))
    # pts_2d = np.dot(P, pts_3d_extend.T).T # 这一句与下面一句是等价的
    pts_2d = np.dot(pts_3d_extend, np.transpose(P))  # nx3
    pts_2d[:, 0] /= pts_2d[:, 2]
    pts_2d[:, 1] /= pts_2d[:, 2]
    return pts_2d[:, 0:2]

四、完整代码与结果现实

1、结果现实

在这里插入图片描述

2、完整代码

这个代码可以直接使用,如下:

import os
import cv2
import numpy as np
import matplotlib.pyplot as plt
def get_image(img_path):
    img = cv2.imread(img_path)
    return img
def show_img(img):

    plt.imshow(img)
    plt.show()
# 转换kitti数据标签labels
class Object3d(object):
    """ 3d object label """

    def __init__(self, label_file_line):
        data = label_file_line.split(" ")
        data[1:] = [float(x) for x in data[1:]]

        # extract label, truncation, occlusion
        self.type = data[0]  # 'Car', 'Pedestrian', ...
        self.truncation = data[1]  # truncated pixel ratio [0..1]
        self.occlusion = int(
            data[2]
        )  # 0=visible, 1=partly occluded, 2=fully occluded, 3=unknown
        self.alpha = data[3]  # object observation angle [-pi..pi]

        # extract 2d bounding box in 0-based coordinates
        self.xmin = data[4]  # left
        self.ymin = data[5]  # top
        self.xmax = data[6]  # right
        self.ymax = data[7]  # bottom
        self.box2d = np.array([self.xmin, self.ymin, self.xmax, self.ymax])

        # extract 3d bounding box information
        self.h = data[8]  # box height
        self.w = data[9]  # box width
        self.l = data[10]  # box length (in meters)
        self.t = (data[11], data[12], data[13])  # location (x,y,z) in camera coord.
        self.ry = data[14]  # yaw angle (around Y-axis in camera coordinates) [-pi..pi]

    def estimate_diffculty(self):
        """ Function that estimate difficulty to detect the object as defined in kitti website"""
        # height of the bounding box
        bb_height = np.abs(self.xmax - self.xmin)

        if bb_height >= 40 and self.occlusion == 0 and self.truncation <= 0.15:
            return "Easy"
        elif bb_height >= 25 and self.occlusion in [0, 1] and self.truncation <= 0.30:
            return "Moderate"
        elif (
            bb_height >= 25 and self.occlusion in [0, 1, 2] and self.truncation <= 0.50
        ):
            return "Hard"
        else:
            return "Unknown"

    def print_object(self):
        print(
            "Type, truncation, occlusion, alpha: %s, %d, %d, %f"
            % (self.type, self.truncation, self.occlusion, self.alpha)
        )
        print(
            "2d bbox (x0,y0,x1,y1): %f, %f, %f, %f"
            % (self.xmin, self.ymin, self.xmax, self.ymax)
        )
        print("3d bbox h,w,l: %f, %f, %f" % (self.h, self.w, self.l))
        print(
            "3d bbox location, ry: (%f, %f, %f), %f"
            % (self.t[0], self.t[1], self.t[2], self.ry)
        )
        print("Difficulty of estimation: {}".format(self.estimate_diffculty()))
def project_to_image(pts_3d, P):
    """ Project 3d points to image plane.

    Usage: pts_2d = projectToImage(pts_3d, P)
      input: pts_3d: nx3 matrix
             P:      3x4 projection matrix
      output: pts_2d: nx2 matrix

      P(3x4) dot pts_3d_extended(4xn) = projected_pts_2d(3xn)
      => normalize projected_pts_2d(2xn)

      <=> pts_3d_extended(nx4) dot P'(4x3) = projected_pts_2d(nx3)
          => normalize projected_pts_2d(nx2)
    """
    n = pts_3d.shape[0]
    pts_3d_extend = np.hstack((pts_3d, np.ones((n, 1))))
    # print(('pts_3d_extend shape: ', pts_3d_extend.shape))
    # pts_2d = np.dot(P, pts_3d_extend.T).T # 这一句与下面一句是等价的
    pts_2d = np.dot(pts_3d_extend, np.transpose(P))  # nx3
    pts_2d[:, 0] /= pts_2d[:, 2]
    pts_2d[:, 1] /= pts_2d[:, 2]
    return pts_2d[:, 0:2]
def roty(t):
    """ Rotation about the y-axis. """
    c = np.cos(t)
    s = np.sin(t)
    return np.array([[c, 0, s], [0, 1, 0], [-s, 0, c]])
def compute_box_3d(obj, P):
    """ Takes an object and a projection matrix (P) and projects the 3d
        bounding box into the image plane.
        Returns:
            corners_2d: (8,2) array in left image coord.
            corners_3d: (8,3) array in in rect camera coord.
    """
    # compute rotational matrix around yaw axis
    R = roty(obj.ry)

    # 3d bounding box dimensions
    l = obj.l
    w = obj.w
    h = obj.h

    # 3d bounding box corners
    x_corners = [l / 2, l / 2, -l / 2, -l / 2, l / 2, l / 2, -l / 2, -l / 2]
    y_corners = [0, 0, 0, 0, -h, -h, -h, -h]
    z_corners = [w / 2, -w / 2, -w / 2, w / 2, w / 2, -w / 2, -w / 2, w / 2]

    # rotate and translate 3d bounding box
    corners_3d = np.dot(R, np.vstack([x_corners, y_corners, z_corners]))
    # print corners_3d.shape
    corners_3d[0, :] = corners_3d[0, :] + obj.t[0]
    corners_3d[1, :] = corners_3d[1, :] + obj.t[1]
    corners_3d[2, :] = corners_3d[2, :] + obj.t[2]
    # print 'cornsers_3d: ', corners_3d
    # only draw 3d bounding box for objs in front of the camera
    if np.any(corners_3d[2, :] < 0.1):
        corners_2d = None
        return corners_2d, np.transpose(corners_3d)

    # project the 3d bounding box into the image plane,相机坐标转像素坐标
    corners_2d = project_to_image(np.transpose(corners_3d), P)
    # print 'corners_2d: ', corners_2d
    return corners_2d, np.transpose(corners_3d)
# 读取label标签
def read_label(label_filename):
    lines = [line.rstrip() for line in open(label_filename)]
    objects = [Object3d(line) for line in lines]
    return objects
class Calibration(object):
    """ Calibration matrices and utils
        3d XYZ in <label>.txt are in rect camera coord.
        2d box xy are in image2 coord
        Points in <lidar>.bin are in Velodyne coord.

        y_image2 = P^2_rect * x_rect
        y_image2 = P^2_rect * R0_rect * Tr_velo_to_cam * x_velo
        x_ref = Tr_velo_to_cam * x_velo
        x_rect = R0_rect * x_ref

        P^2_rect = [f^2_u,  0,      c^2_u,  -f^2_u b^2_x;
                    0,      f^2_v,  c^2_v,  -f^2_v b^2_y;
                    0,      0,      1,      0]
                 = K * [1|t]

        image2 coord:
         ----> x-axis (u)
        |
        |
        v y-axis (v)

        velodyne coord:
        front x, left y, up z

        rect/ref camera coord:
        right x, down y, front z

        Ref (KITTI paper): http://www.cvlibs.net/publications/Geiger2013IJRR.pdf

        TODO(rqi): do matrix multiplication only once for each projection.
    """

    def __init__(self, calib_filepath, from_video=False):
        if from_video:
            calibs = self.read_calib_from_video(calib_filepath)
        else:
            calibs = self.read_calib_file(calib_filepath)
        # Projection matrix from rect camera coord to image2 coord
        self.P = calibs["P2"]
        self.P = np.reshape(self.P, [3, 4])
        # Rigid transform from Velodyne coord to reference camera coord
        self.V2C = calibs["Tr_velo_to_cam"]
        self.V2C = np.reshape(self.V2C, [3, 4])
        self.C2V = self.inverse_rigid_trans(self.V2C)
        # Rotation from reference camera coord to rect camera coord
        self.R0 = calibs["R0_rect"]
        self.R0 = np.reshape(self.R0, [3, 3])

        # Camera intrinsics and extrinsics
        self.c_u = self.P[0, 2]
        self.c_v = self.P[1, 2]
        self.f_u = self.P[0, 0]
        self.f_v = self.P[1, 1]
        self.b_x = self.P[0, 3] / (-self.f_u)  # relative
        self.b_y = self.P[1, 3] / (-self.f_v)

    def read_calib_file(self, filepath):
        """ Read in a calibration file and parse into a dictionary.
        Ref: https://github.com/utiasSTARS/pykitti/blob/master/pykitti/utils.py
        """
        data = {}
        with open(filepath, "r") as f:
            for line in f.readlines():
                line = line.rstrip()
                if len(line) == 0:
                    continue
                key, value = line.split(":", 1)
                # The only non-float values in these files are dates, which
                # we don't care about anyway
                try:
                    data[key] = np.array([float(x) for x in value.split()])
                except ValueError:
                    pass

        return data

    def read_calib_from_video(self, calib_root_dir):
        """ Read calibration for camera 2 from video calib files.
            there are calib_cam_to_cam and calib_velo_to_cam under the calib_root_dir
        """
        data = {}
        cam2cam = self.read_calib_file(
            os.path.join(calib_root_dir, "calib_cam_to_cam.txt")
        )
        velo2cam = self.read_calib_file(
            os.path.join(calib_root_dir, "calib_velo_to_cam.txt")
        )
        Tr_velo_to_cam = np.zeros((3, 4))
        Tr_velo_to_cam[0:3, 0:3] = np.reshape(velo2cam["R"], [3, 3])
        Tr_velo_to_cam[:, 3] = velo2cam["T"]
        data["Tr_velo_to_cam"] = np.reshape(Tr_velo_to_cam, [12])
        data["R0_rect"] = cam2cam["R_rect_00"]
        data["P2"] = cam2cam["P_rect_02"]
        return data

    def cart2hom(self, pts_3d):
        """ Input: nx3 points in Cartesian
            Oupput: nx4 points in Homogeneous by pending 1
        """
        n = pts_3d.shape[0]
        pts_3d_hom = np.hstack((pts_3d, np.ones((n, 1))))
        return pts_3d_hom

    # ===========================
    # ------- 3d to 3d ----------
    # ===========================
    def project_velo_to_ref(self, pts_3d_velo):
        pts_3d_velo = self.cart2hom(pts_3d_velo)  # nx4
        return np.dot(pts_3d_velo, np.transpose(self.V2C))

    def project_ref_to_velo(self, pts_3d_ref):
        pts_3d_ref = self.cart2hom(pts_3d_ref)  # nx4
        return np.dot(pts_3d_ref, np.transpose(self.C2V))

    def project_rect_to_ref(self, pts_3d_rect):
        """ Input and Output are nx3 points """
        return np.transpose(np.dot(np.linalg.inv(self.R0), np.transpose(pts_3d_rect)))

    def project_ref_to_rect(self, pts_3d_ref):
        """ Input and Output are nx3 points """
        return np.transpose(np.dot(self.R0, np.transpose(pts_3d_ref)))

    def project_rect_to_velo(self, pts_3d_rect):
        """ Input: nx3 points in rect camera coord.
            Output: nx3 points in velodyne coord.
        """
        pts_3d_ref = self.project_rect_to_ref(pts_3d_rect)
        return self.project_ref_to_velo(pts_3d_ref)

    def project_velo_to_rect(self, pts_3d_velo):
        pts_3d_ref = self.project_velo_to_ref(pts_3d_velo)
        return self.project_ref_to_rect(pts_3d_ref)

    # ===========================
    # ------- 3d to 2d ----------
    # ===========================
    def project_rect_to_image(self, pts_3d_rect):
        """ Input: nx3 points in rect camera coord.
            Output: nx2 points in image2 coord.
        """
        pts_3d_rect = self.cart2hom(pts_3d_rect)
        pts_2d = np.dot(pts_3d_rect, np.transpose(self.P))  # nx3
        pts_2d[:, 0] /= pts_2d[:, 2]
        pts_2d[:, 1] /= pts_2d[:, 2]
        return pts_2d[:, 0:2]

    def project_velo_to_image(self, pts_3d_velo):
        """ Input: nx3 points in velodyne coord.
            Output: nx2 points in image2 coord.
        """
        pts_3d_rect = self.project_velo_to_rect(pts_3d_velo)
        return self.project_rect_to_image(pts_3d_rect)

    def project_8p_to_4p(self, pts_2d):
        x0 = np.min(pts_2d[:, 0])
        x1 = np.max(pts_2d[:, 0])
        y0 = np.min(pts_2d[:, 1])
        y1 = np.max(pts_2d[:, 1])
        x0 = max(0, x0)
        # x1 = min(x1, proj.image_width)
        y0 = max(0, y0)
        # y1 = min(y1, proj.image_height)
        return np.array([x0, y0, x1, y1])

    def project_velo_to_4p(self, pts_3d_velo):
        """ Input: nx3 points in velodyne coord.
            Output: 4 points in image2 coord.
        """
        pts_2d_velo = self.project_velo_to_image(pts_3d_velo)
        return self.project_8p_to_4p(pts_2d_velo)
    # ===========================
    # ------- 2d to 3d ----------
    # ===========================
    def project_image_to_rect(self, uv_depth):
        """ Input: nx3 first two channels are uv, 3rd channel
                   is depth in rect camera coord.
            Output: nx3 points in rect camera coord.
        """
        n = uv_depth.shape[0]
        x = ((uv_depth[:, 0] - self.c_u) * uv_depth[:, 2]) / self.f_u + self.b_x
        y = ((uv_depth[:, 1] - self.c_v) * uv_depth[:, 2]) / self.f_v + self.b_y
        pts_3d_rect = np.zeros((n, 3))
        pts_3d_rect[:, 0] = x
        pts_3d_rect[:, 1] = y
        pts_3d_rect[:, 2] = uv_depth[:, 2]
        return pts_3d_rect
    def project_image_to_velo(self, uv_depth):
        pts_3d_rect = self.project_image_to_rect(uv_depth)
        return self.project_rect_to_velo(pts_3d_rect)
    def inverse_rigid_trans(self,Tr):
        """ Inverse a rigid body transform matrix (3x4 as [R|t])
            [R'|-R't; 0|1]
        """
        inv_Tr = np.zeros_like(Tr)  # 3x4
        inv_Tr[0:3, 0:3] = np.transpose(Tr[0:3, 0:3])
        inv_Tr[0:3, 3] = np.dot(-np.transpose(Tr[0:3, 0:3]), Tr[0:3, 3])
        return inv_Tr
def draw_projected_box3d(image, qs, color=(0, 255, 0), thickness=2):
    """ Draw 3d bounding box in image
        qs: (8,3) array of vertices for the 3d box in following order:
            1 -------- 0
           /|         /|
          2 -------- 3 .
          | |        | |
          . 5 -------- 4
          |/         |/
          6 -------- 7
    """
    qs = qs.astype(np.int32)
    for k in range(0, 4):
        # Ref: http://docs.enthought.com/mayavi/mayavi/auto/mlab_helper_functions.html
        i, j = k, (k + 1) % 4
        # use LINE_AA for opencv3
        # cv2.line(image, (qs[i,0],qs[i,1]), (qs[j,0],qs[j,1]), color, thickness, cv2.CV_AA)
        cv2.line(image, (qs[i, 0], qs[i, 1]), (qs[j, 0], qs[j, 1]), color, thickness)
        i, j = k + 4, (k + 1) % 4 + 4
        cv2.line(image, (qs[i, 0], qs[i, 1]), (qs[j, 0], qs[j, 1]), color, thickness)

        i, j = k, k + 4
        cv2.line(image, (qs[i, 0], qs[i, 1]), (qs[j, 0], qs[j, 1]), color, thickness)
    return image
def labels_boxes2pixel_in_image(img, objects, calib):
    """
    Show image with 2D bounding boxes
    :param img: 图像内容
    :param objects: label标签内容
    :param calib: 标定文件内容
    :return: img1, img2,box3d_to_pixel2d,第一个值是2d坐标图像,第二个值是3d坐标转到像素画的图像,第三个值是相机坐标与像素坐标对应点
    """
    img1 = np.copy(img)  # for 2d bbox
    img2 = np.copy(img)  # for 3d bbox
    # TODO: change the color of boxes
    box3d_to_pixel2d = {"corners_3d":[],"box3d_pts_2d":[]}
    for obj in objects:
        # 画2d坐标
        if obj.type == "DontCare":
            continue
        else:
            cv2.rectangle(img1,(int(obj.xmin),int(obj.ymin)),(int(obj.xmax), int(obj.ymax)),(0, 255, 0),2,)
            cv2.putText(img1, str(obj.type), (int(obj.xmin), int(obj.ymin)), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)

        # 这个非常重要,该代码就是将其label的3d坐标转为像素2d坐标关键函数
        box3d_pts_2d, corners_3d = compute_box_3d(obj, calib.P)
        box3d_to_pixel2d['corners_3d'].append(corners_3d)
        box3d_to_pixel2d['box3d_pts_2d'].append(box3d_pts_2d)
        if box3d_pts_2d is None:
            print("something wrong in the 3D box.")
            continue
        img2 = draw_projected_box3d(img2, box3d_pts_2d, color=(0, 255, 0))
    return img1, img2,box3d_to_pixel2d


if __name__ == '__main__':
    path = r'C:\Users\Administrator\Desktop\kitti_data\KITTI\training'
    index = '000019'
    calib_path = os.path.join(path, 'calib', index + '.txt')  # 获得标定文件
    image_2_path = os.path.join(path, 'image_2', index + '.png')  # 获得图像
    label_2_path = os.path.join(path, 'label_2', index + '.txt')  # 获得标签lebl
    img = get_image(image_2_path)  # 读取图像
    objects = read_label(label_2_path)  # 处理标签
    calib = Calibration(calib_path)  # 处理标定文件
    img_bbox2d, img_bbox3d, box3d_to_pixel2d = labels_boxes2pixel_in_image(img, objects, calib)  # 重点内容,集成转换

    cv2.imwrite('./bbox2d.png',img_bbox2d)
    cv2.imwrite('./bbox3d.png',img_bbox3d)



本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2120333.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Caffenie配合Redis做两级缓存

一、什么是两级缓存 在项目中。一级缓存用Caffeine&#xff0c;二级缓存用Redis&#xff0c;查询数据时首先查本地的Caffeine缓存&#xff0c;没有命中再通过网络去访问Redis缓存&#xff0c;还是没有命中再查数据库。具体流程如下 二、简单的二级缓存实现-v1 目录结构 2…

MySQL——主从复制、读写分离

目录 前言 一、MySQL主从复制的概述 1、MySQL主从复制的概念 2、Mysql主从复制功能和使用场景 2.1、Mysql主从复制功能 2.2、Mysql主从复制使用场景 3、MySQL支持的复制类型 3.1、基于语句的复制 3.2、基于行的复制 3.3、混合复制 4、主从复制的工作过程 5、MySQL三…

iOS 15推出后利用邮件打开率的7种方法

自从苹果在2021年底推出iOS 15以来&#xff0c;邮件打开率就一直是一个让人头疼的指标。 Klaviyo市场情报主管Mindy Regnell表示&#xff1a;“对于启用了Apple邮件隐私保护&#xff08;MPP&#xff09;的用户来说&#xff0c;苹果会打开这些邮件并预先下载内容到他们的服务器…

2024年“华为杯”第二十一届中国研究生数学建模竞赛(附2004-2023年优秀论文合集)

中国研究生数学建模竞赛&#xff08;以下简称“竞赛”&#xff09;是教育部学位管理与研究生教育司指导&#xff0c;中国学位与研究生教育学会、中国科协青少年科技中心主办的“中国研究生创新实践系列大赛”主题赛事之一。本届比赛报名时间为&#xff1a;2024年6月1日&#xf…

数据结构——线性表(静态链表、循环链表以及双向链表)

1、静态链表 用数组描述的链表叫做静态链表&#xff0c;这种描述方法叫做游标实现法。 静态链表需要对数组的第一个和最后一个元素作为特殊元素处理&#xff0c;不存数据。 最后一个指向第一个有数据的下标地址&#xff0c;第一个游标指向第一个没有数据的下标地址。 我们对…

[译] 大模型推理的极限:理论分析、数学建模与 CPU/GPU 实测(2024)

译者序 本文翻译自 2024 年的一篇文章&#xff1a; LLM inference speed of light&#xff0c; 分析了大模型推理的速度瓶颈及量化评估方式&#xff0c;并给出了一些实测数据&#xff08;我们在国产模型上的实测结果也大体吻合&#xff09;&#xff0c; 对理解大模型推理内部工…

职场答案薄

公司做大的过程就是创始人把职责一层层分摊下去的过程&#xff0c;公司里的各级领导在招聘时的原始诉求都是一样的&#xff0c;就是招到可以帮自己分担一部分工作的人&#xff0c;然后自己好集中精力去做更重要的工作 如何去做运营 1.流程制度&#xff08;三个目的&#xff1a;…

AI边缘计算在安防领域的智能化革新:赋能安防系统的智能化升级

随着人工智能&#xff08;AI&#xff09;和边缘计算技术的快速发展&#xff0c;两者在安防视频领域的应用日益广泛&#xff0c;为传统安防系统带来了革命性的变革。AI边缘计算技术通过将AI算法和模型部署在边缘设备上&#xff0c;实现了数据处理和智能决策的即时响应&#xff0…

FuTalk设计周刊-Vol.073

#AI漫谈 热点捕手 1.Midjourney 样式分享网站 群里设计师创建的 Midjourney 风格网站&#xff0c;用来收集高质量 Sref Codes&#xff0c;展示示例图并且展示风格关键词&#xff0c;使用场景&#xff0c;以及示例提示词&#xff0c;作者称会持续更新 链接https://aiartsecre…

【Java】String StringBuffer与StringBuilder(实操+面试+记忆方法)

Java系列文章目录 补充内容 Windows通过SSH连接Linux 第一章 Linux基本命令的学习与Linux历史 文章目录 Java系列文章目录一、前言二、学习内容&#xff1a;三、问题描述四、解决方案&#xff1a;4.1 代码学习与性能测试4.1.1 代码4.1.2 性能测试结果 4.2 区别 五、总结&#…

uniapp升级Vue3:避坑指南与步骤详解

为什么要升级到 Vue3 Vue3 是 Vue.js 的最新版本&#xff0c;相比 Vue2&#xff0c;它带来了许多改进和新特性&#xff0c;比如更小的包体积、更好的性能、更强大的组合式 API 等。通过升级到 Vue3&#xff0c;我们可以享受到这些新特性带来的好处&#xff0c;提升项目的开发效…

全国-住宅区AOI数据

数据量级&#xff1a;54万&#xff0c;更新时间&#xff1a;2024年3月 覆盖字段&#xff1a; 名称&#xff0c;地址&#xff0c;经纬度&#xff0c;一级分类&#xff0c;二级分类&#xff0c;三级分类&#xff0c;默认图片&#xff0c;AOI围栏 数据来源于&#xff1a;魔行观察…

从知识孤岛到知识共享:内部知识库如何促进团队协作

在当今快速变化的商业环境中&#xff0c;企业内部的知识管理和协作能力成为决定其竞争力的关键因素之一。然而&#xff0c;许多企业面临着“知识孤岛”的困境&#xff0c;即各部门和团队之间信息交流不畅&#xff0c;知识和经验难以有效传递和共享&#xff0c;导致资源浪费、决…

Sanster/IOPaint:AIGC大模型GFPGAN人像修复/美颜:修复历史人物老照片(3)

Sanster/IOPaint&#xff1a;AIGC大模型GFPGAN人像修复/美颜&#xff1a;修复历史人物老照片&#xff08;3&#xff09; 使用大模型GFPGAN进行人像修复/美颜&#xff0c;比如修复历史上某些人物的老照片。 一、首先pip安装组件依赖库&#xff1a; pip install gfpgan 二&…

大模型之三十-语音合成TTS(coqui)

TTS是text2speech的简称&#xff0c;TTS主要的一些常见包括小说、对话、视频配音、chatbot、虚拟人等场景&#xff0c;因coqui/XTTS-v2生成质量高、完全开源、多语言支持等特点&#xff0c;所以本篇基于coqui/XTTS-v2工具包浅出TTS。官方文档见[link]。 介绍 Coqui TTS 是一个…

形象化理解pytorch中的tensor.scatter操作

定义 scatter_(dim, index, src, *, reduceNone) -> Tensor pytorch官网说这个函数的作用是从src中把index指定的位置把数据写入到self里面&#xff0c;然后给了一个公式&#xff1a; self[index[i][j][k]][j][k] src[i][j][k] # if dim 0self[i][index[i][…

ROS CDK魔法书:建立你的游戏王国(TypeScript篇)

引言 在虚拟游戏的世界里&#xff0c;数字化的乐趣如同流动的音符&#xff0c;谱写着无数玩家的共同回忆。而在这片充满创意与冒险的乐园中&#xff0c;您的使命就是将独特的游戏体验与丰富的技术知识相结合&#xff0c;打造出令人难以忘怀的作品。当面对如何实现这一宏伟蓝图…

MOS管G极串联电阻的作用是什么

MOS管栅极串联电阻是如何抑制谐振? 为什么会震荡? 首先了解一下LC串联谐振电路,虽然,LC串联在电路中运用的并不多,但是在无意中总会形成串联谐振,从而产生很多各种各样的现象。如果不了解其本质,会让我们很难理解。比如,使用同样的LC电路滤波,用到两个电路上,有的电…

CCF推荐B类会议和期刊总结:(计算机体系结构/并行与分布计算/存储系统领域)

目录 前言 B类会议 1. SoCC 2. SPAA 3. PODC 4. FPGA 5. CGO 6. DATE 7. HOT CHIPS 8. CLUSTER 9. ICCD 10. ICCAD 11. ICDCS 12. CODESISSS 13. HiPEAC 14. SIGMETRICS 15. PACT 16. ICPP 17. ICS 18. VEE 19. IPDPS 20. Performance 21. HPDC 22. ITC…

在亚马逊云科技上利用Graviton4代芯片构建高性能Java应用(下篇)

简介 在AI迅猛发展的时代&#xff0c;芯片算力对于模型性能起到了至关重要的作用。一款能够同时兼具高性能和低成本的芯片&#xff0c;能够帮助开发者快速构建性能稳定的生成式AI应用&#xff0c;同时降低开发成本。今天小李哥将介绍亚马逊推出的4代高性能计算处理器Gravition…