爆改YOLOv8|利用图像分割网络UNetV2改进yolov8主干-即插即用

news2024/9/22 1:30:48

1,本文介绍

U-Net v2 通过引入创新的跳跃连接设计来提升医学图像分割的精度。这一版本专注于更有效地融合不同层级的特征,包括高级特征中的语义信息和低级特征中的细节信息。通过这种优化,U-Net v2 能够在低级特征中注入丰富的语义,同时细化高级特征,从而实现更精准的对象边界描绘和小结构提取。

其主要技术创新包括:

  • 多级特征提取:使用深度神经网络编码器从输入图像中提取不同层次的特征。
  • 语义与细节融合(Semantics and Detail Infusion, SDI)模块:通过哈达玛积操作,将高级特征中的语义信息与低级特征中的细节信息融合到各层级的特征图中。
  • 改进的跳跃连接:这些新型跳跃连接增强了各层特征的语义和细节表现,从而在解码器阶段实现更高精度的分割。

关于UNetV2的详细介绍可以看论文:https://arxiv.org/abs/2311.17791

本文将讲解如何将UNetV2融合进yolov8

话不多说,上代码!

2, 将UNetV2融合进yolov8

2.1 步骤一

找到如下的目录'ultralytics/nn/modules',然后在这个目录下创建一个UNetV2.py文件,文件名字可以根据你自己的习惯起,然后将UNetV2的核心代码复制进去


import os.path
import warnings
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
import math
 
__all__ = ['pvt_v2_b0', 'pvt_v2_b1', 'pvt_v2_b2', 'pvt_v2_b3', 'pvt_v2_b4', 'pvt_v2_b5']
 
class ChannelAttention(nn.Module):
    def __init__(self, in_planes, ratio=16):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)
 
        self.fc1 = nn.Conv2d(in_planes, in_planes // 16, 1, bias=False)
        self.relu1 = nn.ReLU()
        self.fc2 = nn.Conv2d(in_planes // 16, in_planes, 1, bias=False)
 
        self.sigmoid = nn.Sigmoid()
 
    def forward(self, x):
        avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
        max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
        out = avg_out + max_out
        return self.sigmoid(out)
 
 
class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super(SpatialAttention, self).__init__()
 
        assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
        padding = 3 if kernel_size == 7 else 1
 
        self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
        self.sigmoid = nn.Sigmoid()
 
    def forward(self, x):
        avg_out = torch.mean(x, dim=1, keepdim=True)
        max_out, _ = torch.max(x, dim=1, keepdim=True)
        x = torch.cat([avg_out, max_out], dim=1)
        x = self.conv1(x)
        return self.sigmoid(x)
 
 
class BasicConv2d(nn.Module):
    def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1):
        super(BasicConv2d, self).__init__()
 
        self.conv = nn.Conv2d(in_planes, out_planes,
                              kernel_size=kernel_size, stride=stride,
                              padding=padding, dilation=dilation, bias=False)
        self.bn = nn.BatchNorm2d(out_planes)
        self.relu = nn.ReLU(inplace=True)
 
    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return x
 
 
class Encoder(nn.Module):
    def __init__(self, pretrain_path):
        super().__init__()
        self.backbone = pvt_v2_b2()
 
        if pretrain_path is None:
            warnings.warn('please provide the pretrained pvt model. Not using pretrained model.')
        elif not os.path.isfile(pretrain_path):
            warnings.warn(f'path: {pretrain_path} does not exists. Not using pretrained model.')
        else:
            print(f"using pretrained file: {pretrain_path}")
            save_model = torch.load(pretrain_path)
            model_dict = self.backbone.state_dict()
            state_dict = {k: v for k, v in save_model.items() if k in model_dict.keys()}
            model_dict.update(state_dict)
 
            self.backbone.load_state_dict(model_dict)
 
    def forward(self, x):
        f1, f2, f3, f4 = self.backbone(x)  # (x: 3, 352, 352)
        return f1, f2, f3, f4
 
 
class SDI(nn.Module):
    def __init__(self, channel):
        super().__init__()
 
        self.convs = nn.ModuleList(
            [nn.Conv2d(channel, channel, kernel_size=3, stride=1, padding=1) for _ in range(4)])
 
    def forward(self, xs, anchor):
        ans = torch.ones_like(anchor)
        target_size = anchor.shape[-1]
 
        for i, x in enumerate(xs):
            if x.shape[-1] > target_size:
                x = F.adaptive_avg_pool2d(x, (target_size, target_size))
            elif x.shape[-1] < target_size:
                x = F.interpolate(x, size=(target_size, target_size),
                                      mode='bilinear', align_corners=True)
 
            ans = ans * self.convs[i](x)
 
        return ans
 
 
class UNetV2(nn.Module):
    """
    use SpatialAtt + ChannelAtt
    """
    def __init__(self, channel=3, n_classes=1, deep_supervision=True, pretrained_path=None):
        super().__init__()
        self.deep_supervision = deep_supervision
 
        self.encoder = Encoder(pretrained_path)
 
        self.ca_1 = ChannelAttention(64)
        self.sa_1 = SpatialAttention()
 
        self.ca_2 = ChannelAttention(128)
        self.sa_2 = SpatialAttention()
 
        self.ca_3 = ChannelAttention(320)
        self.sa_3 = SpatialAttention()
 
        self.ca_4 = ChannelAttention(512)
        self.sa_4 = SpatialAttention()
 
        self.Translayer_1 = BasicConv2d(64, channel, 1)
        self.Translayer_2 = BasicConv2d(128, channel, 1)
        self.Translayer_3 = BasicConv2d(320, channel, 1)
        self.Translayer_4 = BasicConv2d(512, channel, 1)
 
        self.sdi_1 = SDI(channel)
        self.sdi_2 = SDI(channel)
        self.sdi_3 = SDI(channel)
        self.sdi_4 = SDI(channel)
 
        self.seg_outs = nn.ModuleList([
            nn.Conv2d(channel, n_classes, 1, 1) for _ in range(4)])
 
        self.deconv2 = nn.ConvTranspose2d(channel, channel, kernel_size=4, stride=2, padding=1,
                                          bias=False)
        self.deconv3 = nn.ConvTranspose2d(channel, channel, kernel_size=4, stride=2,
                                          padding=1, bias=False)
        self.deconv4 = nn.ConvTranspose2d(channel, channel, kernel_size=4, stride=2,
                                          padding=1, bias=False)
        self.deconv5 = nn.ConvTranspose2d(channel, channel, kernel_size=4, stride=2,
                                          padding=1, bias=False)
 
        self.width_list = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
 
    def forward(self, x):
        seg_outs = []
        f1, f2, f3, f4 = self.encoder(x)
 
        f1 = self.ca_1(f1) * f1
        f1 = self.sa_1(f1) * f1
        f1 = self.Translayer_1(f1)
 
        f2 = self.ca_2(f2) * f2
        f2 = self.sa_2(f2) * f2
        f2 = self.Translayer_2(f2)
 
        f3 = self.ca_3(f3) * f3
        f3 = self.sa_3(f3) * f3
        f3 = self.Translayer_3(f3)
 
        f4 = self.ca_4(f4) * f4
        f4 = self.sa_4(f4) * f4
        f4 = self.Translayer_4(f4)
 
        f41 = self.sdi_4([f1, f2, f3, f4], f4)
        f31 = self.sdi_3([f1, f2, f3, f4], f3)
        f21 = self.sdi_2([f1, f2, f3, f4], f2)
        f11 = self.sdi_1([f1, f2, f3, f4], f1)
 
        seg_outs.append(self.seg_outs[0](f41))
 
        y = self.deconv2(f41) + f31
        seg_outs.append(self.seg_outs[1](y))
 
        y = self.deconv3(y) + f21
        seg_outs.append(self.seg_outs[2](y))
 
        y = self.deconv4(y) + f11
        seg_outs.append(self.seg_outs[3](y))
 
        for i, o in enumerate(seg_outs):
            seg_outs[i] = F.interpolate(o, scale_factor=4, mode='bilinear')
 
        if self.deep_supervision:
            return seg_outs[::-1]
        else:
            return seg_outs[-1]
 
 
 
class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.dwconv = DWConv(hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)
 
        self.apply(self._init_weights)
 
    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()
 
    def forward(self, x, H, W):
        x = self.fc1(x)
        x = self.dwconv(x, H, W)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x
 
 
class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
        super().__init__()
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
 
        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5
 
        self.q = nn.Linear(dim, dim, bias=qkv_bias)
        self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
 
        self.sr_ratio = sr_ratio
        if sr_ratio > 1:
            self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
            self.norm = nn.LayerNorm(dim)
 
        self.apply(self._init_weights)
 
    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()
 
    def forward(self, x, H, W):
        B, N, C = x.shape
        q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
 
        if self.sr_ratio > 1:
            x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
            x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
            x_ = self.norm(x_)
            kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        else:
            kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        k, v = kv[0], kv[1]
 
        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
 
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
 
        return x
 
 
class Block(nn.Module):
 
    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
            attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
 
        self.apply(self._init_weights)
 
    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()
 
    def forward(self, x, H, W):
        x = x + self.drop_path(self.attn(self.norm1(x), H, W))
        x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
 
        return x
 
 
class OverlapPatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """
 
    def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
 
        self.img_size = img_size
        self.patch_size = patch_size
        self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
        self.num_patches = self.H * self.W
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride,
                              padding=(patch_size[0] // 2, patch_size[1] // 2))
        self.norm = nn.LayerNorm(embed_dim)
 
        self.apply(self._init_weights)
 
    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()
 
    def forward(self, x):
        x = self.proj(x)
        _, _, H, W = x.shape
        x = x.flatten(2).transpose(1, 2)
        x = self.norm(x)
 
        return x, H, W
 
 
class PyramidVisionTransformerImpr(nn.Module):
    def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
                 num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
                 attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
                 depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]):
        super().__init__()
        self.num_classes = num_classes
        self.depths = depths
 
        # patch_embed
        self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_chans=in_chans,
                                              embed_dim=embed_dims[0])
        self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_chans=embed_dims[0],
                                              embed_dim=embed_dims[1])
        self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_chans=embed_dims[1],
                                              embed_dim=embed_dims[2])
        self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_chans=embed_dims[2],
                                              embed_dim=embed_dims[3])
 
        # transformer encoder
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
        cur = 0
        self.block1 = nn.ModuleList([Block(
            dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
            sr_ratio=sr_ratios[0])
            for i in range(depths[0])])
        self.norm1 = norm_layer(embed_dims[0])
 
        cur += depths[0]
        self.block2 = nn.ModuleList([Block(
            dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
            sr_ratio=sr_ratios[1])
            for i in range(depths[1])])
        self.norm2 = norm_layer(embed_dims[1])
 
        cur += depths[1]
        self.block3 = nn.ModuleList([Block(
            dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
            sr_ratio=sr_ratios[2])
            for i in range(depths[2])])
        self.norm3 = norm_layer(embed_dims[2])
 
        cur += depths[2]
        self.block4 = nn.ModuleList([Block(
            dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
            sr_ratio=sr_ratios[3])
            for i in range(depths[3])])
        self.norm4 = norm_layer(embed_dims[3])
 
        # classification head
        # self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
 
        self.apply(self._init_weights)
 
        self.width_list = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
 
    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()
 
    def init_weights(self, pretrained=None):
        if isinstance(pretrained, str):
            logger = 1
            #load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger)
 
    def reset_drop_path(self, drop_path_rate):
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
        cur = 0
        for i in range(self.depths[0]):
            self.block1[i].drop_path.drop_prob = dpr[cur + i]
 
        cur += self.depths[0]
        for i in range(self.depths[1]):
            self.block2[i].drop_path.drop_prob = dpr[cur + i]
 
        cur += self.depths[1]
        for i in range(self.depths[2]):
            self.block3[i].drop_path.drop_prob = dpr[cur + i]
 
        cur += self.depths[2]
        for i in range(self.depths[3]):
            self.block4[i].drop_path.drop_prob = dpr[cur + i]
 
    def freeze_patch_emb(self):
        self.patch_embed1.requires_grad = False
 
    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'}  # has pos_embed may be better
 
    def get_classifier(self):
        return self.head
 
    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
 
    # def _get_pos_embed(self, pos_embed, patch_embed, H, W):
    #     if H * W == self.patch_embed1.num_patches:
    #         return pos_embed
    #     else:
    #         return F.interpolate(
    #             pos_embed.reshape(1, patch_embed.H, patch_embed.W, -1).permute(0, 3, 1, 2),
    #             size=(H, W), mode="bilinear").reshape(1, -1, H * W).permute(0, 2, 1)
 
    def forward_features(self, x):
        B = x.shape[0]
        outs = []
 
        # stage 1
        x, H, W = self.patch_embed1(x)
        for i, blk in enumerate(self.block1):
            x = blk(x, H, W)
        x = self.norm1(x)
        x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
        outs.append(x)
 
        # stage 2
        x, H, W = self.patch_embed2(x)
        for i, blk in enumerate(self.block2):
            x = blk(x, H, W)
        x = self.norm2(x)
        x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
        outs.append(x)
 
        # stage 3
        x, H, W = self.patch_embed3(x)
        for i, blk in enumerate(self.block3):
            x = blk(x, H, W)
        x = self.norm3(x)
        x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
        outs.append(x)
 
        # stage 4
        x, H, W = self.patch_embed4(x)
        for i, blk in enumerate(self.block4):
            x = blk(x, H, W)
        x = self.norm4(x)
        x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
        outs.append(x)
 
        return outs
 
        # return x.mean(dim=1)
 
    def forward(self, x):
        x = self.forward_features(x)
        # x = self.head(x)
 
        return x
 
 
class DWConv(nn.Module):
    def __init__(self, dim=768):
        super(DWConv, self).__init__()
        self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
 
    def forward(self, x, H, W):
        B, N, C = x.shape
        x = x.transpose(1, 2).view(B, C, H, W)
        x = self.dwconv(x)
        x = x.flatten(2).transpose(1, 2)
 
        return x
 
 
def _conv_filter(state_dict, patch_size=16):
    """ convert patch embedding weight from manual patchify + linear proj to conv"""
    out_dict = {}
    for k, v in state_dict.items():
        if 'patch_embed.proj.weight' in k:
            v = v.reshape((v.shape[0], 3, patch_size, patch_size))
        out_dict[k] = v
 
    return out_dict
 
 
class pvt_v2_b0(PyramidVisionTransformerImpr):
    def __init__(self, **kwargs):
        super(pvt_v2_b0, self).__init__(
            patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)
 
class pvt_v2_b1(PyramidVisionTransformerImpr):
    def __init__(self, **kwargs):
        super(pvt_v2_b1, self).__init__(
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)
 
class pvt_v2_b2(PyramidVisionTransformerImpr):
    def __init__(self, **kwargs):
        super(pvt_v2_b2, self).__init__(
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)
 
class pvt_v2_b3(PyramidVisionTransformerImpr):
    def __init__(self, **kwargs):
        super(pvt_v2_b3, self).__init__(
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)
 
class pvt_v2_b4(PyramidVisionTransformerImpr):
    def __init__(self, **kwargs):
        super(pvt_v2_b4, self).__init__(
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)
 
 
class pvt_v2_b5(PyramidVisionTransformerImpr):
    def __init__(self, **kwargs):
        super(pvt_v2_b5, self).__init__(
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)

2.2 步骤二

在task.py导入我们的模块

from .modules.UNetV2 import *

2.3 步骤三

按下图所示进行修改,在task.py的parse_model方法中

2.4 步骤四

在task.py的parse_model方法中,添加如下代码

    elif m in {pvt_v2_b0, pvt_v2_b1, pvt_v2_b2, pvt_v2_b3, pvt_v2_b4, pvt_v2_b5}:
            m = m(*args)
            c2 = m.width_list 
            backbone = True

2.5 步骤五

在task.py的parse_model方法中,对如下代码进行修改,修改为如图所示

if isinstance(c2, list):
            m_ = m
            m_.backbone = True
        else:
            m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
            t = str(m)[8:-2].replace('__main__.', '')  # module type
 
 
        m.np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type = i + 4 if backbone else i, f, t  # attach index, 'from' index, type

2.6 步骤六

在task.py的parse_model方法中,对如下代码进行修改,修改为如图所示,在上图的紧邻后方

2.7 步骤七

在task.py的BaseModel类中,对如下代码进行修改,修改为如图所示

 def _predict_once(self, x, profile=False, visualize=False, embed=None):
        """
        Perform a forward pass through the network.
        Args:
            x (torch.Tensor): The input tensor to the model.
            profile (bool):  Print the computation time of each layer if True, defaults to False.
            visualize (bool): Save the feature maps of the model if True, defaults to False.
            embed (list, optional): A list of feature vectors/embeddings to return.
        Returns:
            (torch.Tensor): The last output of the model.
        """
        y, dt, embeddings = [], [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                if len(x) != 5:  # 0 - 5
                    x.insert(0, None)
                for index, i in enumerate(x):
                    if index in self.save:
                        y.append(i)
                    else:
                        y.append(None)
                x = x[-1]  # 最后一个输出传给下一层
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
            if embed and m.i in embed:
                embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flatten
                if m.i == max(embed):
                    return torch.unbind(torch.cat(embeddings, 1), dim=0)
        return x

2.8 步骤八

在task.py的大概200多行detectionmodel中,对如下参数进修改为640

2.9 步骤九

额外的步骤-如果计算量打印不下来,可以找到utils/torch_utils.py,修改以下参数值

注意!!!,这个步骤比较多,容易搞错,修改过程一定要多检查 

到此修改完成,复制下面的yaml文件运行即可

yaml文件

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
 
# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
 
 
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, pvt_v2_b1, []]  # 4
  - [-1, 1, SPPF, [1024, 5]]  # 5
 
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 6
  - [[-1, 3], 1, Concat, [1]]  # 7 cat backbone P4
  - [-1, 3, C2f, [512]]  # 8
 
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 9
  - [[-1, 2], 1, Concat, [1]]  # 10 cat backbone P3
  - [-1, 3, C2f, [256]]  # 11 (P3/8-small)
 
  - [-1, 1, Conv, [256, 3, 2]] # 12
  - [[-1, 8], 1, Concat, [1]]  # 13 cat head P4
  - [-1, 3, C2f, [512]]  # 14 (P4/16-medium)
 
  - [-1, 1, Conv, [512, 3, 2]] # 15
  - [[-1, 5], 1, Concat, [1]]  # 16 cat head P5
  - [-1, 3, C2f, [1024]]  # 17 (P5/32-large)
 
  - [[11, 14, 17], 1, Detect, [nc]]  # Detect(P3, P4, P5)

# 关于主干网络大家可以自行替换,数据集不同效果不同

不知不觉已经看完了哦,动动小手留个点赞吧--_--

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2113842.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

wireshark安装及抓包新手使用教程

Wireshark是非常流行的网络封包分析软件&#xff0c;可以截取各种网络数据包&#xff0c;并显示数据包详细信息。常用于开发测试过程各种问题定位。本文主要内容包括&#xff1a; 1、Wireshark软件下载和安装以及Wireshark主界面介绍。 2、WireShark简单抓包示例。通过该例子学…

JetBrains Aqua安装步骤和基本配置

一、安装步骤 下载链接&#xff1a;https://www.jetbrains.com.cn/aqua/ 1、点击下载按钮。 2、点击下载IDE&#xff0c;浏览器下载.exe。&#xff08;如果是mac或linux可选择对应的下载安装包&#xff09; 3、双击.exe文件&#xff0c;点击下一步。 4、可点击【浏览】选择安装…

在Webmin上默认状态无法正常显示 Mariadb V11.02及以上版本

OS: Armbian OS 24.5.0 Bookworm Mariadb V11.02及以上版本 Webmin&#xff1a;V2.202 小众问题&#xff0c;主要是记录一下。 如题 Webmin 默认无法 Mariadb V11.02及以上版本 如果对 /etc/webmin/mysql/config 文件作相应调整就可以再现Mariadb管理界面。 路径文件&#xff…

风格控制水平创新高!南理工InstantX小红书发布CSGO:简单高效的端到端风格迁移框架

论文链接&#xff1a;https://arxiv.org/pdf/2408.16766 项目链接&#xff1a;https://csgo-gen.github.io/ 亮点直击 构建了一个专门用于风格迁移的数据集设计了一个简单但有效的端到端训练的风格迁移框架CSGO框架&#xff0c;以验证这个大规模数据集在风格迁移中的有益效果。…

2024年,女生到底适合转行ui设计还是软件测试?

作为2024年的就业选择来说&#xff0c;软件测试和UI设计发展都挺不错的 选择这两个方向转行的女生很多。但具体选择测试还是UI设计&#xff0c;最好还是根据你个人的兴趣爱好以及长期的发展路径去选择 比如&#xff1a;薪资、工作稳定性、后续晋升空间、学习难度等等方面~ 如…

HCIP:一次性搞定OSPF基础

OSPF 一&#xff0c; OSPF基础1. 技术背景&#xff08;RIP中存在的问题&#xff09;OSPF协议特点OSPF三张表OSPF数据表头部数据包内容&#xff1a;helloDBD&#xff08;数据库描述报文&#xff09;LSRLSULSack OSPF工作过程1. 确认可达性&#xff0c;建立邻居2-way前&#xff0…

掌握Hive函数[2]:从基础到高级应用

目录 高级聚合函数 多进一出 1. 普通聚合 count/sum... 2. collect_list 收集并形成list集合&#xff0c;结果不去重 3. collect_set 收集并形成set集合&#xff0c;结果去重 案例演示 1. 每个月的入职人数以及姓名 炸裂函数 概述 案例演示 1. 数据准备 1&#xff09;表…

接口自动化三大经典难题

目录 一、接口项目不生成token怎么解决关联问题 1. Session机制 2. 基于IP或设备ID的绑定 3. 使用OAuth或第三方认证 4. 利用隐式传递的参数 5. 基于时间戳的签名验证 二、接口测试中网络问题导致无法通过怎么办 1. 重试机制 2. 设置超时时间 3. 使用模拟数据 4. 网…

nmon服务器监控工具使用

nmon&#xff1a;是一个分析linux服务器性能的免费工具&#xff0c;可以用来帮助我们整体性的分析服务端的CPU&#xff0c;内存&#xff0c;网络&#xff0c;IO&#xff0c;虚拟内存等指标 下载nmon.jar包及分析文件&#xff1a;百度网盘 链接: 提取码: 0000 一、nmon配置及使…

JavaScript (变量,var,Let,Const)

目录 JavaScript 变量 JavaScript 变量 JavaScript 标识符 声明&#xff08;创建&#xff09; JavaScript 变量 JavaScript Let 全局作用域 函数作用域 块作用域&#xff08;Let) 重新声明变量 JavaScript Const 在声明时赋值 JavaScript 变量 JavaScript 变量 Jav…

2024 年高教社杯全国大学生数学建模竞赛题目【A/B/C/D/E题】完整论文+代码结果

2024国赛C题参考论文https://download.csdn.net/download/qq_52590045/89718370网盘链接形式&#xff0c;在里更新 2024国赛A题参考论文https://download.csdn.net/download/qq_52590045/89718367 网盘链接形式&#xff0c;在里更新 2024国赛D题参考论文https://download.…

数据库面试题学习

B树和B树 B树 排好序的 节点内部有多个元素 B树 排好序的 节点内多个元素 叶子节点有指针&#xff08;双向指针&#xff09; 非叶子节点冗余了一份在叶子节点 mysql定义B树 InnoDB B树是B树的升级版~ InnoDB b树是怎么产生的 mysql 页 目录 16KB 自增id uuid 一页最多可以存储…

PPPoE配置学习笔记

企业内网和运营商网络如上图所示&#xff0c;中间交换机模拟运营商传输设备。公网IP段&#xff1a;12.1.1.0/24。内网IP段&#xff1a;192.168.1.0/24。PPPoE拨号采用CHAP认证&#xff0c;用户名&#xff1a;admin 密码&#xff1a;admin123 实验要求&#xff1a; 将R1设置为…

基于STM32的多功能车位锁设计

本设计基于STM32的多功能车位锁&#xff0c;该系统主要包括&#xff1a;测距模块、光强采集模块、主控芯片模块、显示模块、摄像模组等。系统以STM32单片机作为主控芯片用来对系统中的外设进行控制并且对传输过来的数据进行处理。通过K210模块来实现图像识别的功能检测车牌是否…

Zookeeper基本原理

1.什么是Zookeeper? Zookeeper是一个开源的分布式协调服务器框架&#xff0c;由Apache软件基金会开发&#xff0c;专为分布式系统设计。它主要用于在分布式环境中管理和协调多个节点之间的配置信息、状态数据和元数据。 Zookeeper采用了观察者模式的设计理念&#xff0c;其核心…

kaggle竞赛宝典 | Mamba模型综述!

本文来源公众号“kaggle竞赛宝典”&#xff0c;仅用于学术分享&#xff0c;侵权删&#xff0c;干货满满。 原文链接&#xff1a;Mamba模型综述&#xff01; 型语言模型&#xff08;LLMs&#xff09;&#xff0c;成为深度学习的基石。尽管取得了令人瞩目的成就&#xff0c;Tra…

物联网之PWM呼吸灯、脉冲、LEDC

MENU 前言原理硬件电路设计软件程序设计analogWrite()函数实现呼吸灯效果LEDC输出PWM信号 前言 学习制作呼吸灯&#xff0c;通过LED灯的亮度变化来验证PWM不同电压的输出。呼吸灯是指灯光在单片机的控制之下完成由亮到暗的逐渐变化&#xff0c;感觉好像是人在呼吸。 原理 脉冲宽…

【Unity小技巧】URP管线遮挡高亮效果

前言 在URP渲染管线环境下实现物体遮挡高亮显示效果&#xff0c;效果如下&#xff1a;Unity URP遮挡高亮 实现步骤 创建层级&#xff0c;为需要显示高亮效果的物体添加层级&#xff0c;比如Player 创建一个材质球&#xff0c;也就是高亮效果显示的材质球找到Universal Render…

固态硬盘装系统有必要分区吗?

前言 现在的新电脑有哪一台是不使用固态硬盘的呢&#xff1f;这个好像很少很少了…… 有个朋友买了一台新的笔记本电脑&#xff0c;开机之后&#xff0c;电脑只有一个分区&#xff08;系统C盘500GB&#xff09;。这时候她想要给笔记本分区…… 这个真的有必要分区吗&#xf…

springboot流浪天使乐园管理系统

基于springbootvue实现的流浪天使乐园管理系统&#xff08;源码L文ppt&#xff09;4-039 第4章 系统设计 4.1 总体功能设计 一般个人用户和管理者都需要登录才能进入流浪天使乐园管理系统&#xff0c;使用者登录时会在后台判断使用的权限类型&#xff0c;包括一般使用者…