接口自动化三大经典难题

news2025/1/9 15:32:11

目录

一、接口项目不生成token怎么解决关联问题

1. Session机制

2. 基于IP或设备ID的绑定

3. 使用OAuth或第三方认证

4. 利用隐式传递的参数

5. 基于时间戳的签名验证

二、接口测试中网络问题导致无法通过怎么办

1. 重试机制

2. 设置超时时间

3. 使用模拟数据

4. 网络问题的预检测

5. 日志记录与错误分析

6. 切换网络环境

7. 异步处理

8. 隔离网络问题

9. 本地缓存

10. 网络环境模拟

三、返回数据太多,assert不好用怎么处理

1. 只验证关键字段

2. 分段验证

3. 基于模式的验证

4. 对比快照

5. 数据过滤

6. 逐步断言

7. 日志和对比工具

8. 生成随机验证

9. 批量验证


一、接口项目不生成token怎么解决关联问题

在接口项目中,如果不生成 token,用于用户身份验证或授权的场景中,通常会影响请求的安全性和关联性。为了解决不生成 token 时的关联问题,可以考虑以下几种方案:

1. Session机制

  • 使用 session 在服务器端保存用户的状态,并通过客户端的 cookie 传递 session ID 以关联用户请求。这样,服务端可以通过 session ID 获取用户的状态,避免生成 token 的需求。
  • 优点:比较简单,适合小型项目。
  • 缺点:扩展性差,特别是分布式环境中,可能需要引入集中式的 session 存储。

2. 基于IP或设备ID的绑定

  • 通过记录用户的 IP 地址或者设备 ID,在后续请求中校验客户端的 IP 或设备 ID 是否匹配,以此关联用户的请求。
  • 优点:简单快捷,适用于不需要高度安全的场景。
  • 缺点:安全性较低,可能出现用户 IP 地址变化或者设备共享导致关联失效的问题。

3. 使用OAuth或第三方认证

  • 如果不想生成 token,可以考虑使用 OAuth、SAML 等第三方认证方式,利用第三方提供的凭证来关联用户。
  • 优点:使用第三方身份验证,安全性高且不需要自己管理 token。
  • 缺点:增加了与第三方的集成复杂度。

4. 利用隐式传递的参数

  • 如果在接口请求时,不想通过 token 来管理身份验证,可以通过传递某些隐式参数(例如用户 ID、签名等)来识别和关联用户请求。
  • 优点:避免了 token 的管理。
  • 缺点:安全性较低,隐式参数容易被篡改。

5. 基于时间戳的签名验证

  • 通过为请求生成唯一的签名,结合请求参数和时间戳,在每次请求时校验签名的有效性。这种方式不需要 token,但能够确保请求的合法性。
  • 优点:签名验证可以防止篡改。
  • 缺点:实现相对复杂,且需要对签名算法进行安全设计。

二、接口测试中网络问题导致无法通过怎么办

在接口测试中,网络问题可能会导致接口请求失败,无法通过测试。为了解决这些问题,可以尝试以下几种策略:

1. 重试机制

  • 实现重试:在网络请求失败时,可以设置一定的重试次数和间隔时间。在测试中自动重试接口请求,避免因为暂时的网络不稳定导致测试失败。
  • 举例:可以设置每隔 3 秒重试一次,最多重试 3 次。
  • 注意:重试机制应避免无限循环,同时应记录重试的次数和间隔。

2. 设置超时时间

  • 合理设置超时时间:接口测试时可以为每个请求设置合理的超时时间,避免因网络延迟而导致请求挂起。如果网络超时,可以立即捕获异常并采取相应措施。
  • 方法:例如在 HTTP 请求中,通常会提供 timeout 参数来设置最大等待时间。

3. 使用模拟数据

  • 使用Mock或本地环境:在接口测试中,可以使用 Mock 服务或本地服务器来模拟接口响应,避免直接依赖真实网络环境。这样能够确保即使网络出现问题,也能继续进行测试。
  • 工具:可以使用 Postman 的 Mock 服务、WireMock 或其他类似工具来模拟接口响应。

4. 网络问题的预检测

  • 提前检测网络连通性:在运行测试之前,可以增加一个步骤来检测网络的可用性。例如通过 ping 服务器,或检查特定端口是否通畅,确保网络状态正常后再进行测试。
  • 方法:可以写一个小脚本,在每次测试前检查网络状态。

5. 日志记录与错误分析

  • 捕获网络错误并记录日志:在测试脚本中捕获网络错误,详细记录错误信息,包括错误代码、错误描述、失败的接口和请求参数。这样可以方便分析问题是否由网络引起。
  • 日志分析:通过日志分析,可以快速定位网络问题的原因,是否为网络波动、DNS解析失败等。

6. 切换网络环境

  • 使用备用网络:如果测试环境允许,可以设置备用的网络连接,例如使用不同的网络提供商,或者切换到更稳定的网络。
  • CDN加速:如果使用了 CDN,可以通过切换到最近的 CDN 节点来提升网络稳定性。

7. 异步处理

  • 使用异步请求:如果网络响应速度较慢,可以使用异步请求处理,防止测试因等待过久而失败。异步请求可以让其他测试任务继续执行,等到响应到达时再处理。
  • 注意:异步请求需要特别注意处理返回结果的顺序和状态。

8. 隔离网络问题

  • 将网络问题隔离为非测试失败因素:在测试报告中,可以区分因为网络问题导致的失败和实际接口功能的失败。这样可以避免因为网络问题而影响测试的整体通过率。
  • 工具:如 Jenkins 等持续集成工具中,可以将因网络问题导致的失败标记为 “不计入总测试失败”。

9. 本地缓存

  • 使用缓存机制:对于一些不常变动的测试数据,可以考虑在本地使用缓存,这样即使网络不稳定,测试也可以使用缓存的数据来完成。

10. 网络环境模拟

  • 模拟网络问题:可以通过一些工具来模拟不同的网络问题(如延迟、丢包、限速等),然后测试接口在不同网络环境下的表现,确保系统在网络不稳定时的表现符合预期。
  • 工具:例如 Charles、Fiddler、Network Link Conditioner 等工具可以模拟网络延迟和不稳定情况。

三、返回数据太多,assert不好用怎么处理

在接口测试中,如果返回的数据量很大,直接使用 assert 进行数据验证可能会变得困难。为了处理这种情况,确保验证的高效性和可读性,可以采取以下几种方法:

1. 只验证关键字段

  • 选择性验证:返回的数据量很大时,通常并不需要对所有数据进行验证,只需验证关键字段(例如状态码、某些重要的字段值等)即可。这可以显著减少需要检查的数据量。
  • 示例
response = get_api_response()  # 获取API返回的数据
assert response['status'] == 200  # 验证状态码
assert 'important_field' in response  # 验证关键字段存在
assert response['important_field'] == 'expected_value'  # 验证字段值

2. 分段验证

  • 将验证分块进行:将大量的数据拆分成多个部分,分段进行验证。例如,针对分页的数据返回,可以验证每页的总数、每个分页的某些关键字段,或者仅验证返回数据的某个片段。
  • 示例
response = get_api_response()
for item in response['data'][:10]:  # 只验证前10条数据
    assert 'field1' in item
    assert item['field1'] == 'expected_value'

3. 基于模式的验证

  • 使用 JSON Schema 进行结构验证:对于返回的 JSON 数据,可以使用 JSON Schema 验证数据结构,而不是手动去 assert 每个字段。这样可以验证数据的结构是否符合预期,同时减少代码的复杂度。
  • 示例
import jsonschema

schema = {
    "type": "object",
    "properties": {
        "status": {"type": "integer"},
        "data": {
            "type": "array",
            "items": {
                "type": "object",
                "properties": {
                    "id": {"type": "integer"},
                    "name": {"type": "string"}
                },
                "required": ["id", "name"]
            }
        }
    },
    "required": ["status", "data"]
}

response = get_api_response()
jsonschema.validate(instance=response, schema=schema)

4. 对比快照

  • 使用快照测试:对于大量的返回数据,可以将接口的返回结果保存为“快照”(Snapshot),并在后续的测试中将实际结果与快照进行对比。这种方法非常适合用于验证大数据集是否在意料之外发生了变化。
  • 工具:在 Python 中可以使用 pytest-snapshot 进行快照测试。
  • 示例
def test_api_response(snapshot):
    response = get_api_response()
    snapshot.assert_match(response)  # 与快照进行对比

5. 数据过滤

  • 过滤不重要的数据:对于不必要的字段或者动态变化的字段,可以将它们过滤掉,只保留需要验证的数据。这样可以简化验证过程,提升 assert 的效率。
  • 示例
response = get_api_response()
filtered_response = {key: response[key] for key in ['field1', 'field2']}  # 过滤无关字段
assert filtered_response == {'field1': 'expected_value1', 'field2': 'expected_value2'}

6. 逐步断言

  • 分层进行验证:对于复杂的数据结构,可以将数据拆分为多个小部分,逐步进行验证。这样可以更容易发现问题所在,也能保证测试的覆盖面。
  • 示例
response = get_api_response()
assert response['status'] == 200
assert 'data' in response
data = response['data']
assert len(data) > 0
assert data[0]['field1'] == 'expected_value'

7. 日志和对比工具

  • 使用日志记录差异:如果需要对大量数据进行验证,可以先记录下返回值和期望值的差异,将差异结果写入日志,便于分析和后续处理。
  • 工具:可以使用 deepdiff 来对比两个大对象之间的差异。
  • 示例
from deepdiff import DeepDiff

response = get_api_response()
expected = {"field1": "expected_value", "field2": "expected_value2"}
diff = DeepDiff(response, expected)
print(diff)  # 输出差异
assert not diff  # 确保没有差异

8. 生成随机验证

  • 随机验证数据集中的数据:如果返回的数据量特别大,可以随机抽取部分数据进行验证。通过设置一定的随机抽样机制,可以在保证测试覆盖率的同时减少每次测试的工作量。
  • 示例
import random

response = get_api_response()
sampled_data = random.sample(response['data'], 5)  # 从数据中随机抽取5个样本
for item in sampled_data:
    assert item['field1'] == 'expected_value'

9. 批量验证

  • 批量处理数据:在大规模数据返回的场景下,可以批量处理数据,先提取出所有需要验证的字段,再一次性验证所有数据是否符合预期。
  • 示例
response = get_api_response()
all_values = [item['field1'] for item in response['data']]
assert all(value == 'expected_value' for value in all_values)  # 批量验证

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2113829.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

nmon服务器监控工具使用

nmon:是一个分析linux服务器性能的免费工具,可以用来帮助我们整体性的分析服务端的CPU,内存,网络,IO,虚拟内存等指标 下载nmon.jar包及分析文件:百度网盘 链接: 提取码: 0000 一、nmon配置及使…

JavaScript (变量,var,Let,Const)

目录 JavaScript 变量 JavaScript 变量 JavaScript 标识符 声明(创建) JavaScript 变量 JavaScript Let 全局作用域 函数作用域 块作用域(Let) 重新声明变量 JavaScript Const 在声明时赋值 JavaScript 变量 JavaScript 变量 Jav…

2024 年高教社杯全国大学生数学建模竞赛题目【A/B/C/D/E题】完整论文+代码结果

2024国赛C题参考论文https://download.csdn.net/download/qq_52590045/89718370网盘链接形式,在里更新 2024国赛A题参考论文https://download.csdn.net/download/qq_52590045/89718367 网盘链接形式,在里更新 2024国赛D题参考论文https://download.…

数据库面试题学习

B树和B树 B树 排好序的 节点内部有多个元素 B树 排好序的 节点内多个元素 叶子节点有指针(双向指针) 非叶子节点冗余了一份在叶子节点 mysql定义B树 InnoDB B树是B树的升级版~ InnoDB b树是怎么产生的 mysql 页 目录 16KB 自增id uuid 一页最多可以存储…

PPPoE配置学习笔记

企业内网和运营商网络如上图所示,中间交换机模拟运营商传输设备。公网IP段:12.1.1.0/24。内网IP段:192.168.1.0/24。PPPoE拨号采用CHAP认证,用户名:admin 密码:admin123 实验要求: 将R1设置为…

基于STM32的多功能车位锁设计

本设计基于STM32的多功能车位锁,该系统主要包括:测距模块、光强采集模块、主控芯片模块、显示模块、摄像模组等。系统以STM32单片机作为主控芯片用来对系统中的外设进行控制并且对传输过来的数据进行处理。通过K210模块来实现图像识别的功能检测车牌是否…

Zookeeper基本原理

1.什么是Zookeeper? Zookeeper是一个开源的分布式协调服务器框架,由Apache软件基金会开发,专为分布式系统设计。它主要用于在分布式环境中管理和协调多个节点之间的配置信息、状态数据和元数据。 Zookeeper采用了观察者模式的设计理念,其核心…

kaggle竞赛宝典 | Mamba模型综述!

本文来源公众号“kaggle竞赛宝典”,仅用于学术分享,侵权删,干货满满。 原文链接:Mamba模型综述! 型语言模型(LLMs),成为深度学习的基石。尽管取得了令人瞩目的成就,Tra…

物联网之PWM呼吸灯、脉冲、LEDC

MENU 前言原理硬件电路设计软件程序设计analogWrite()函数实现呼吸灯效果LEDC输出PWM信号 前言 学习制作呼吸灯,通过LED灯的亮度变化来验证PWM不同电压的输出。呼吸灯是指灯光在单片机的控制之下完成由亮到暗的逐渐变化,感觉好像是人在呼吸。 原理 脉冲宽…

【Unity小技巧】URP管线遮挡高亮效果

前言 在URP渲染管线环境下实现物体遮挡高亮显示效果,效果如下:Unity URP遮挡高亮 实现步骤 创建层级,为需要显示高亮效果的物体添加层级,比如Player 创建一个材质球,也就是高亮效果显示的材质球找到Universal Render…

固态硬盘装系统有必要分区吗?

前言 现在的新电脑有哪一台是不使用固态硬盘的呢?这个好像很少很少了…… 有个朋友买了一台新的笔记本电脑,开机之后,电脑只有一个分区(系统C盘500GB)。这时候她想要给笔记本分区…… 这个真的有必要分区吗&#xf…

springboot流浪天使乐园管理系统

基于springbootvue实现的流浪天使乐园管理系统(源码L文ppt)4-039 第4章 系统设计 4.1 总体功能设计 一般个人用户和管理者都需要登录才能进入流浪天使乐园管理系统,使用者登录时会在后台判断使用的权限类型,包括一般使用者…

【VUE】Vue 组件详解

📝个人主页🌹:个人主页 ⏩收录专栏⏪:VUE 🌹🌹期待您的关注 🌹🌹,让我们共同进步! 文章目录 一、Vue 组件的基础概念1.1 什么是组件?1.2 组件的作…

Unity教程(十五)敌人战斗状态的实现

Unity开发2D类银河恶魔城游戏学习笔记 Unity教程(零)Unity和VS的使用相关内容 Unity教程(一)开始学习状态机 Unity教程(二)角色移动的实现 Unity教程(三)角色跳跃的实现 Unity教程&…

u盘显示需要格式化才能用预警下的数据拯救恢复指南

U盘困境:需要格式化的紧急应对 在数字信息爆炸的时代,U盘作为便携的数据存储介质,承载着我们工作、学习乃至生活中的大量重要资料。然而,当U盘突然弹出“需要格式化才能用”的提示时,这份便捷瞬间转化为焦虑与不安。这…

MiniCPM-V: A GPT-4V Level MLLM on Your Phone

MiniCPM-V: A GPT-4V Level MLLM on Your Phone 研究背景和动机 现有的MLLM通常需要大量的参数和计算资源,限制了其在实际应用中的范围。大部分MLLM需要部署在高性能云服务器上,这种高成本和高能耗的特点,阻碍了其在移动设备、离线和隐私保…

通信工程学习:什么是AM标准调幅

AM标准调幅 AM标准调幅,即Amplitude Modulation(振幅调制),是一种在电子通信中广泛使用的调制方法,特别是在无线电载波传输信息方面。以下是关于AM标准调幅的详细解释: 一、AM标准调幅的定义与原理 AM标准…

机器视觉硬件选型根据某项目相机镜头

一 项目总需求 1、大视野检测需求: (1)大视野: ①产品尺寸15.6寸屏幕,产品大小:350mm x 225mm; ②产品料盘尺寸大小:565mm x 425mm; ③工作距离:880mm;检测精度:500μm&#xff…

如何使用 ef core 的 code first(fluent api)模式实现自定义类型转换器?

如何使用 ef core 的 code first 模式实现自定义类型转换器 前言 1. 项目结构2. 实现步骤2.1 定义转换器2.1.1 DateTime 转换器2.1.2 JsonDocument 转换器 2.2 创建实体类并配置数据结构类型2.3 定义 Utility 工具类2.4 配置 DbContext2.4.1 使用 EF Core 配置 DbContext 的两种…

浅谈人工智能之基于AutoGen Studio+Ollama本地大模型构建AI Agent

浅谈人工智能之基于AutoGen Studio+Ollama本地大模型构建AI Agent 摘要 随着人工智能技术的飞速发展,大型语言模型已成为推动创新应用的关键力量。然而,云服务的使用虽然便捷,但面临着数据安全、延迟及成本等挑战。为解决这些问题,越来越多的开发者选择在本地部署大模型。…