kaggle竞赛宝典 | Mamba模型综述!

news2025/1/9 6:29:42

本文来源公众号“kaggle竞赛宝典”,仅用于学术分享,侵权删,干货满满。

原文链接:Mamba模型综述!

型语言模型(LLMs),成为深度学习的基石。尽管取得了令人瞩目的成就,Transformers仍面临固有的局限性,尤其是在推理时,由于注意力计算的平方复杂度,导致推理过程耗时较长。

最近,一种名为Mamba的新型架构应运而生,其灵感源自经典的状态空间模型,成为构建基础模型的有力替代方案。Mamba在保持对序列长度近似线性扩展性的同时,提供了与Transformers相当的建模能力。这一发展引发了越来越多的研究,积极探索Mamba在不同领域中实现卓越性能的潜力。鉴于这一快速发展,亟需一份系统的综述,以整合现有的Mamba赋能模型,并全面理解这一新兴的模型架构。

因此,在本综述中,我们对近期与Mamba相关的研究进行了深入调查,涵盖了三个主要方面:基于Mamba的模型进展、Mamba适应多样化数据的技术,以及Mamba在各种应用中的表现。具体来说,我们首先回顾了各种具有代表性的深度学习模型的基础知识,并作为预备知识介绍了Mamba-1&2的详细内容。接着,为了展示Mamba对AI的重要性,我们全面回顾了相关研究,重点关注Mamba模型的架构设计、数据适应性和应用领域。最后,我们讨论了当前的局限性,并探索了多个有前景的研究方向,以为未来的研究提供更深入的见解。

1 引言

在过去的二十年中,作为最杰出的人工智能(AI)技术,深度学习在医疗保健 [88]、自主系统 [37, 60]、推荐系统 [104, 228] 和金融服务 [144, 216] 等多个领域引发了一场革命。在此期间,涌现了许多深度神经网络(DNNs),极大地改变了人类的生活方式,为个人带来了巨大的便利。一个显著的例子是U-Net [151, 164],这是视觉领域中一种强大的深度学习模型,被广泛应用于医学影像中,如MRI和CT扫描的检查。其应用有助于疾病的识别和诊断,展示了其在这一关键医疗领域的有效性 [112, 191]。此外,图神经网络(GNNs)被用于处理图结构数据,以支持智能服务,如为用户推荐个性化内容、产品或服务的推荐系统 [41, 42, 194]。再者,循环神经网络(RNNs)由于其能够捕捉序列和上下文信息的能力,被广泛应用于机器翻译中,为来自不同语言背景的个人提供了有效的沟通和理解彼此思想、观点和信息的能力 [119, 167]。

在众多深度学习架构中,Transformers近年来脱颖而出,并在广泛的应用中确立了其主导地位 [34, 175]。例如,作为最具代表性的大型基础模型,像ChatGPT这样的大型语言模型(LLMs)就是基于Transformer架构构建的 [2, 146, 228]。通过将模型规模扩大到数十亿并在多种数据源上进行训练,这些基于Transformer的模型展示了类人水平的智能,具备了令人印象深刻的语言理解、常识推理和上下文学习能力 [44, 217]。这种显著的成功得益于注意力机制 [174],它使得基于Transformer的模型能够集中注意输入序列的相关部分,从而促进更好的上下文理解。然而,注意力机制也引入了一个显著的计算开销,该开销随着输入大小呈平方增长 [124, 233],这在处理较长输入时带来了挑战。例如,计算成本的快速增长使得Transformers在处理大量序列时变得不切实际或难以实现,从而限制了其在诸如文档级别机器翻译 [131] 或长文档摘要 [94] 等任务中的应用。

最近,一种名为结构化状态空间序列模型(SSMs) [58] 的有前途的架构应运而生,能够高效地捕捉序列数据中的复杂依赖关系,成为Transformer的一个强大竞争者。这些模型受经典状态空间模型 [89] 的启发,可以被视为循环神经网络和卷积神经网络的融合。它们可以使用递归或卷积操作高效计算,实现与序列长度成线性或近线性扩展,从而显著降低计算成本。更具体地说,作为最成功的SSM变体之一,Mamba在保持与序列长度成线性扩展性的同时,达到了与Transformers相当的建模能力 [55],因此成为焦点话题。Mamba首先引入了一种简单但有效的选择机制,使模型能够过滤掉不相关的信息,同时通过基于输入对SSM参数进行参数化,保留必要且相关的数据。然后,Mamba提出了一种硬件感知算法,通过扫描而非卷积来递归计算模型,在A100 GPU上实现了高达3倍的计算速度提升。如图1所示,强大的复杂且长序列数据建模能力,以及近线性扩展性,使Mamba成为一个新兴的基础模型,准备在计算机视觉 [199, 234]、自然语言处理 [111, 226]、医疗保健 [152, 179, 198] 等多个研究和应用领域掀起一场革命。例如,Zhu等人 [234] 提出了Vim,它在提取高分辨率图像特征时比DeiT [173] 快2.8倍,并节省了86.8%的GPU内存。由于Mamba强大的长序列建模能力及其卓越的效率,已有大量文献专注于在各种下游任务中应用和改进Mamba。鉴于关于Mamba研究的显著增长,亟需对现有文献进行全面回顾,并深入探讨未来研究的潜在方向。因此,在本综述中,我们从多个角度对Mamba进行了全面回顾,以为新人提供对Mamba内在工作原理的基础理解,同时帮助有经验的从业者跟上其最新的发展。具体而言,本综述的其余部分组织如下:第2节,我们回顾了各种具有代表性的深度神经网络的背景知识,包括RNNs、Transformers和状态空间模型,而第3节介绍了Mamba的详细内容。随后,我们在第4节从模块设计、扫描模式和内存管理的角度总结了基于Mamba的研究的最新进展。接着,第5节介绍了Mamba适应多样化数据的技术,包括序列和非序列数据。此外,第6节介绍了Mamba模型的代表性应用,而第7节则提出了挑战和未来方向。最后,我们在第8节总结了整个综述。

在我们的综述同时,还发布了几篇相关综述,主要聚焦于状态空间模型 [137, 183] 和Vision Mamba [120, 199, 218]。与这些综述不同,本文集中于与Mamba相关的研究。我们从一个新的视角系统地分析了现有文献,探讨了Mamba架构的演变以及Mamba模型中使用的数据适应方法。

2 Mamba

为了应对传统SSMs在上下文感知能力方面的不足,[55] 提出了Mamba,作为一个有潜力的通用序列基础模型骨干。最近,Mamba-2 [29] 提出了结构化空间状态对偶性(SSD),它建立了一个连接结构化SSMs和多种形式注意力机制的强大理论框架,使我们能够将最初为Transformers开发的算法和系统优化应用于SSMs。在本节中,我们将对Mamba和Mamba-2进行简明而清晰的介绍。

3 Mamba模型的进展

状态空间模型和Mamba最近得到了深入研究,并逐渐成为基础模型骨干的有力替代方案。尽管Mamba在自然语言处理方面表现出色,但它仍然面临一些挑战,如记忆丢失、对多样化任务的泛化能力不足,以及相比基于Transformer的语言模型在捕捉复杂模式方面的能力较弱。为了克服这些挑战,研究人员进行了大量努力以改进Mamba架构。现有研究主要集中在修改模块设计、扫描模式和内存管理方面。本节将介绍这三个方面的几项重要技术,并在表1中对相关研究进行总结。

4 结论

Mamba作为一种新兴的深度学习架构,凭借其强大的建模能力和计算效率,在语言生成、图像分类、推荐系统以及药物发现等多个领域取得了显著成功。近年来,越来越多的研究致力于开发具有更强表示学习能力和更低计算复杂度的基于Mamba的深度学习模型。

鉴于Mamba的快速发展,迫切需要对其进行系统性的概述。为填补这一空白,本文对Mamba进行了全面回顾,重点介绍了其架构进展、数据适应性和应用领域,为研究人员提供了对Mamba最新发展的深入理解和总体概览。此外,鉴于Mamba研究仍处于初期阶段,我们还讨论了当前的局限性,并提出了未来研究的有前景方向。

参考论文:

THE END !

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2113811.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

物联网之PWM呼吸灯、脉冲、LEDC

MENU 前言原理硬件电路设计软件程序设计analogWrite()函数实现呼吸灯效果LEDC输出PWM信号 前言 学习制作呼吸灯,通过LED灯的亮度变化来验证PWM不同电压的输出。呼吸灯是指灯光在单片机的控制之下完成由亮到暗的逐渐变化,感觉好像是人在呼吸。 原理 脉冲宽…

【Unity小技巧】URP管线遮挡高亮效果

前言 在URP渲染管线环境下实现物体遮挡高亮显示效果,效果如下:Unity URP遮挡高亮 实现步骤 创建层级,为需要显示高亮效果的物体添加层级,比如Player 创建一个材质球,也就是高亮效果显示的材质球找到Universal Render…

固态硬盘装系统有必要分区吗?

前言 现在的新电脑有哪一台是不使用固态硬盘的呢?这个好像很少很少了…… 有个朋友买了一台新的笔记本电脑,开机之后,电脑只有一个分区(系统C盘500GB)。这时候她想要给笔记本分区…… 这个真的有必要分区吗&#xf…

springboot流浪天使乐园管理系统

基于springbootvue实现的流浪天使乐园管理系统(源码L文ppt)4-039 第4章 系统设计 4.1 总体功能设计 一般个人用户和管理者都需要登录才能进入流浪天使乐园管理系统,使用者登录时会在后台判断使用的权限类型,包括一般使用者…

【VUE】Vue 组件详解

📝个人主页🌹:个人主页 ⏩收录专栏⏪:VUE 🌹🌹期待您的关注 🌹🌹,让我们共同进步! 文章目录 一、Vue 组件的基础概念1.1 什么是组件?1.2 组件的作…

Unity教程(十五)敌人战斗状态的实现

Unity开发2D类银河恶魔城游戏学习笔记 Unity教程(零)Unity和VS的使用相关内容 Unity教程(一)开始学习状态机 Unity教程(二)角色移动的实现 Unity教程(三)角色跳跃的实现 Unity教程&…

u盘显示需要格式化才能用预警下的数据拯救恢复指南

U盘困境:需要格式化的紧急应对 在数字信息爆炸的时代,U盘作为便携的数据存储介质,承载着我们工作、学习乃至生活中的大量重要资料。然而,当U盘突然弹出“需要格式化才能用”的提示时,这份便捷瞬间转化为焦虑与不安。这…

MiniCPM-V: A GPT-4V Level MLLM on Your Phone

MiniCPM-V: A GPT-4V Level MLLM on Your Phone 研究背景和动机 现有的MLLM通常需要大量的参数和计算资源,限制了其在实际应用中的范围。大部分MLLM需要部署在高性能云服务器上,这种高成本和高能耗的特点,阻碍了其在移动设备、离线和隐私保…

通信工程学习:什么是AM标准调幅

AM标准调幅 AM标准调幅,即Amplitude Modulation(振幅调制),是一种在电子通信中广泛使用的调制方法,特别是在无线电载波传输信息方面。以下是关于AM标准调幅的详细解释: 一、AM标准调幅的定义与原理 AM标准…

机器视觉硬件选型根据某项目相机镜头

一 项目总需求 1、大视野检测需求: (1)大视野: ①产品尺寸15.6寸屏幕,产品大小:350mm x 225mm; ②产品料盘尺寸大小:565mm x 425mm; ③工作距离:880mm;检测精度:500μm&#xff…

如何使用 ef core 的 code first(fluent api)模式实现自定义类型转换器?

如何使用 ef core 的 code first 模式实现自定义类型转换器 前言 1. 项目结构2. 实现步骤2.1 定义转换器2.1.1 DateTime 转换器2.1.2 JsonDocument 转换器 2.2 创建实体类并配置数据结构类型2.3 定义 Utility 工具类2.4 配置 DbContext2.4.1 使用 EF Core 配置 DbContext 的两种…

浅谈人工智能之基于AutoGen Studio+Ollama本地大模型构建AI Agent

浅谈人工智能之基于AutoGen Studio+Ollama本地大模型构建AI Agent 摘要 随着人工智能技术的飞速发展,大型语言模型已成为推动创新应用的关键力量。然而,云服务的使用虽然便捷,但面临着数据安全、延迟及成本等挑战。为解决这些问题,越来越多的开发者选择在本地部署大模型。…

python学习11-Pytorch张量与数据处理1

ndarray 首先,我们介绍n维数组,也称为张量(tensor)。 使用过Python中NumPy计算包的读者会对本部分很熟悉。 无论使用哪个深度学习框架,它的张量类(在MXNet中为ndarray, 在PyTorch和TensorFlow中…

数据集 CrowdPose 多人姿态估计 深度学习 >> DataBall

数据集 CrowdPose 多人姿态估计 深度学习 CrowdPose 数据集 这是一个用于探讨在拥挤场景中的多人姿态估计的图像数据集。该数据集包括 2 万张图像和标注有 14 个关键点的 8 万个人体姿势,其中测试集包括 8,000 张图像。 article{li2018crowdpose, title{CrowdPose…

mysql-PXC实现高可用

mysql8.0使用PXC实现高可用 什么是 PXC PXC 是一套 MySQL 高可用集群解决方案,与传统的基于主从复制模式的集群架构相比 PXC 最突出特点就是解决了诟病已久的数据复制延迟问题,基本上可以达到实时同步。而且节点与节点之间,他们相互的关系是…

数据预处理与协同过滤推荐算法——从数据清洗到个性化电影推荐

推荐系统在现代应用中占据了重要地位,尤其在电影、音乐等个性化内容推荐中广泛使用。本文将介绍如何使用数据预处理、特征工程以及多种推荐算法(包括协同过滤、基于内容的推荐、混合推荐等)来实现电影推荐系统。通过Pandas、Scikit-learn、Te…

研1日记5

x torch.tensor(x),numpy 转tensor 三维矩阵相加 screen -S pid 进入之前创建好的screen transpose()只能一次操作两个维度;permute()可以一次操作多维数据,且必须传入所有维度数, transpose()中的dim没有数的大小区分;permut…

Redis 分布式锁:线程安全在分布式环境中的解决方案

Redis 分布式锁:线程安全在分布式环境中的解决方案 一 . 分布式锁二 . 分布式锁的实现策略2.1 引入 setnx2.2 引入过期时间2.3 引入校验 ID2.4 引入 lua 脚本2.5 引入看门狗2.6 引入 redlock 算法 Hello , 大家好 , 这个专栏给大家带来的是 Redis 系列 ! 本篇文章给…

Flutter 中的低功耗蓝牙概述

随着智能设备数量的增加,控制这些设备的需求也在增加。对于多种使用情况,期望设备在需要进行控制的同时连接到互联网会受到很大限制,因此是不可行的。在这些情况下,使用低功耗蓝牙(也称为 Bluetooth LE 或 BLE&#xf…

[yolov5] --- yolov5入门实战「土堆视频」

1 项目介绍及环境配置 下载yolov5 tags 5.0源码,https://github.com/ultralytics/yolov5/tree/v5.0,解压 Pycharm 中创建conda虚拟环境 激活conda虚拟环境 根据作者提供的requirements.txt文件,pip install -r requirements.txt 如果作者没有…