CountDownLatch的应用与原理

news2024/9/23 13:24:46

一、什么是CountDownLatch

CountDownLatch是具有synchronized机制的一个工具,目的是让一个或者多个线程等待,直到其他线程的一系列操作完成。

CountDownLatch初始化的时候,需要提供一个整形数字,数字代表着线程需要调用countDown()方法的次数,当计数为0时,线程才会继续执行await()方法后的其他内容。CountDownLatch(int count);

二、CountDownLatch对象中的方法

  1. CountDownLatch(int count):count为计数器的初始值(一般需要多少个线程执行,count就设为几)。
  2. countDown(): 每调用一次计数器值-1,直到count被减为0,代表所有线程全部执行完毕。
  3. getCount():获取当前计数器的值。
  4. await(): 等待计数器变为0,即等待所有异步线程执行完毕。
  5. boolean await(long timeout, TimeUnit unit): 此方法与await()区别:

①此方法至多会等待指定的时间,超时后会自动唤醒,若 timeout 小于等于零,则不会等待
②boolean 类型返回值:若计数器变为零了,则返回 true;若指定的等待时间过去了,则返回 false

三、CountDownLatch使用

首先我们先使用join阻塞等待线程完成

首先建立3个线程。

public class Worker1 implements Runnable {
    @Override
    public void run() {
        System.out.println("-线程1启动");
        try {
            Thread.sleep(13_000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("线程1完成--我休眠13秒\r\n");
    }
}

public class Worker2 implements Runnable {
    @Override
    public void run() {
        System.out.println("-线程2启动");
        try {
            Thread.sleep(3_000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("线程2完成--我休眠3秒\r\n");
    }
}

public class Worker3 implements Runnable {
    @Override
    public void run() {
        System.out.println("-线程3启动");
        try {
            Thread.sleep(3_000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }


        try {
            Thread.sleep(3_000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("线程3完成--我休眠6秒\r\n");
        System.out.println();
    }
}


public class Main {
    public static void main(String[] args) throws InterruptedException {
        Worker1 worker1 = new Worker1();
        Worker2 worker2 = new Worker2();
        Worker3 worker3 = new Worker3();

        Thread thread1 = new Thread(worker1,"线程1");
        Thread thread2 = new Thread(worker2,"线程2");
        Thread thread3 = new Thread(worker3,"线程3");

        thread1.start();
        thread2.start();
        thread3.start();

        thread1.join();
        thread2.join();
        thread3.join();
        System.out.println("主线程结束....");

    }
}

 结果如下所示:

可以看出三个线程是并行执行的。启动顺序,并不和执行完毕的顺序一致,但可以明确的是,主线程为一直阻塞,直到三个线程执行完毕。

使用CountDownLatch模拟并发

    CountDownLatch countDownLatch = new CountDownLatch(1);
    for (int i = 0; i < 5; i++) {
            new Thread(() -> {
                    try {
                            //所有请求都阻塞在这,等待
                            countDownLatch.await();
                            // 调用测试接口
                            System.out.println(Thread.currentThread().getName() + "开始执行……");
                    } catch (InterruptedException e) {
                            e.printStackTrace();
                    }
            }).start();
    }
    // 让请求都准备好
    Thread.sleep(2000);
    // 让所有请求统一请求
    countDownLatch.countDown();

单个线程等待:多个线程(任务)完成后,进行汇总合并 

        int count = 3;
        CountDownLatch countDownLatch = new CountDownLatch(count);
        for (int i = 0; i < count; i++) {
            final int index = i;
            new Thread(() -> {
                    try {
                            Thread.sleep(1000 + ThreadLocalRandom.current().nextInt(1000));
                            System.out.println("finish" + index + Thread.currentThread().getName());
                    } catch (InterruptedException e) {
                            e.printStackTrace();
                    }finally{
                            countDownLatch.countDown();
                    }
            }).start();
        }
        countDownLatch.await();// 主线程在阻塞,当计数器==0,就唤醒主线程往下执行。
        System.out.println("主线程:在所有任务运行完成后,进行结果汇总");

 我们可以看到如下结果是主线程一直阻塞一直等待计数器==0才唤醒主线程继续执行的。

 

四、CountDownLatch原理

CountDownLatch是通过AQSstate字段来实现的一个计数器,计数器的初始值(state的值)为new CountDownLatch设置的数量,每次调用countDown的时候,state的值会进行减1,最后某个线程将state值减为0时,会把调用了await()进行阻塞等待的线程进行唤醒。CountDownLatch重写了tryReleaseShared这个方法,只有当state这个字段被设置为0时,也就是tryReleaseShared返回true的情况就会执行doReleaseShared方法,把调用了await的线程进行唤醒。

  public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }
        return false;
    }
 protected boolean tryReleaseShared(int releases) {
            // Decrement count; signal when transition to zero
            for (;;) {
                int c = getState();
                if (c == 0)
                    return false;
                int nextc = c-1;
                if (compareAndSetState(c, nextc))
                    return nextc == 0;
            }
        }

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2101281.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

K8s系列之:解释Kubernetes Operators

K8s系列之&#xff1a;解释Kubernetes Operators 什么是控制器循环&#xff1f;Kubernetes Operator是如何工作的&#xff1f;如何添加自定义资源自定义资源定义Kubernetes Operators&#xff1a;案例研究 你是否曾想过&#xff0c;Site Reliability Engineering&#xff08;SR…

【优化】Nginx 配置页面请求不走缓存 浏览器页面禁用缓存

【优化】Nginx 配置页面请求不走缓存 禁用缓存 目录 【优化】Nginx 配置页面请求不走缓存 禁用缓存 对所有请求禁用缓存 对特定location禁用缓存 注意事项 全局禁用缓存 要配置Nginx使其不缓存内容&#xff0c;通常是指禁止浏览器缓存响应的内容&#xff0c;或者是在代理…

Qt 模仿企业微信图标实现按钮图片文字上下结构

简述 实现类似企业微信左侧导航栏的上下结构的按钮 效果图 可以用2种方案实现&#xff0c;2种最终效果图如下&#xff1a; 方案1 QToolButton 实现 ui.toolButton->setFixedSize(50, 50);ui.toolButton->setCheckable(true);ui.toolButton->setAutoExclusive(true);…

电源测试设备功能篇:测试仪器的灵活兼容与扩展

依托ATECLOUD智能云测试平台打造的电源ate自动测试设备&#xff0c;相较于传统的自动化测试系统&#xff0c;其突出特点在于提供了灵活的系统操作。这种操作灵活性不仅表现在自动化测试的便捷性、报告模板的多样化以及数据分析的灵活性上&#xff0c;还表现在电源测试仪器设备配…

覃嘉仪,艺人经纪人、经纪人、影视经纪人。2002.7.9出生于四川省遂宁市射洪县

覃嘉仪&#xff0c;艺人经纪人、经纪人、影视经纪人。2002.7.9出生于四川省遂宁市射洪县 2020年开始从事宣传工作&#xff0c;2023成为“WP经纪工作室”艺人经纪&#xff0c;现担任孙亦欣、魏逸熙等艺人的经纪人。 2024年涉足于影视行业&#xff0c;并加入嘉林娱乐。2024年在由…

部标JT808标准下的视频汇聚新方案:EasyCVR平台助力推动车辆监管智能化进程

在数字化转型的浪潮中&#xff0c;智慧城市的建设正以前所未有的速度推进&#xff0c;而市政车载设备作为城市运行的重要“神经末梢”&#xff0c;其智能化、联网化水平直接影响着城市管理效率与服务质量。近年来&#xff0c;随着部标协议&#xff08;即国家行业标准协议&#…

Python学习日志(3)—— 运行

通过python文档辅助学习&#xff0c;规范代码 python文档&#xff1a;3.12.5 Documentation (python.org) 1、python版本之间的差异&#xff1a;新的特性和变化、弃用和新增 2、标准库参考&#xff08;宝典&#xff0c;用于查询&#xff09; 3、语法参考 python程序是解释型…

记录工作时的一些错误

1、mobaxterm问题&#xff1a; 解决方案&#xff1a;找不到mottynew.exe 2、虚拟机安装centos7进入不了引导页面 解决方案&#xff1a;检查镜像 虚拟机 192.168.40.128 root/Root yxr/y123x123r123 解决方案&#xff1a; 问题&#xff1a;docker run不起来容器&#xff0c;显…

HTTP 状态码全攻略:快速搞懂服务器的“暗号”

文章目录 HTTP 状态码全攻略&#xff1a;快速搞懂服务器的“暗号”1xx&#xff1a;打个招呼&#xff0c;信息来了 (Informational Responses)2xx&#xff1a;事情办成了&#xff01; (Successful Responses)3xx&#xff1a;走这边&#xff0c;换个地方吧 (Redirection Response…

音视频——RTSP流媒体传输技术介绍及抓包解析

流式传输 流媒体技术&#xff1a;将声音影像向用户计算机 连续、不间断的进行传送&#xff0c;延时小。 抓包 route add 添加到指定网络的路由规则 route add [-net|-host] [网域或主机] netmask [mask] [gw|dev] route del [-net|-host] [网域或主机] netmask [mask] [gw|dev…

第9章 使用ContentProvider实现数据共享

第9章 使用ContentProvider实现数据共享 本章要点 理解ContentProvider的功能与意义ContentProvider类的作用和常用方法Uri 对 ContentProvider的作用理解ContentProvider与ContentResolver的关系实现自己的ContentProvider配置ContentProvider使用ContentResolver操作数据操…

宝藏!《联盟自控基础班筑基题库》(凤凰篇) 1-8章:甄选部分

本文内容&#xff0c;全部选自自动化考研联盟的&#xff1a;初试《自控基础班筑基题库》(凤凰篇)。 Part1&#xff1a;资料封面&目录 Part2&#xff1a;资料各个章节具体内容 第1章 自动控制的基本概念 第2章 控制系统的数学模型 第3章 控制系统的时域分析 第4章 根轨迹法…

某东东的jdgs算法分析--适合进阶学习

某东东的jdgs算法分析 这个贴主要还是对算法本身结构部分描述会多点&#xff0c;憋问&#xff0c;问就是过去太久了&#xff0c;很多逆向过程不一定能还原&#xff08;主要是懒&#xff0c;不想原路再走一遍&#xff09;&#xff0c;所以可能有部分跳跃的内容&#xff0c;会给具…

【网络安全】IDOR之敏感数据泄露

未经许可,不得转载。 文章目录 正文正文 在测试“添加到收藏夹”功能时,我拦截了发送到服务器的请求,请求体如下: {“uriTemplate”:“asset/{assetId}/favorite”,“version”:“v2”,“type”:“POST”,“req_service”:“pict”,“url”:“asset/VICTIMS_ASS…

【论文阅读】DivTheft: An Ensemble Model Stealing Attack by Divide-and-Conquer(2023)

摘要 Recently, model stealing attacks(模型窃取攻击) are widely studied(广泛研究) but most of them are focused on stealing a single non-discrete model(窃取单个非离散模型), e.g., neural networks(神经网络). For ensemble models(对于集成模型), these …

分钟快速搭建分班查询系统,支持查班级群二维码

新学期已经开始了&#xff0c;老师们又要忙活起来了。但是&#xff0c;别担心&#xff0c;现在有个超方便的工具&#xff0c;能帮大家快速搞定分班的事情&#xff0c;还能让家长们一键加入班级群&#xff0c;省时又省力&#xff01; 以前分班可麻烦了&#xff0c;老师们得一个…

集群的调度和策略

集群的调度&#xff1a; 怎么把pod部署到节点的方法。 调度的过程&#xff1a; scheduler是集群的调度器&#xff0c;主要任务就是把pod部署到节点上。 自动调度&#xff1a; 1、公平&#xff0c;保证每个可用的节点都可以部署pod 2、资源的高效利用&#xff0c;集群当中…

C/C++内存详解

欢迎来到 破晓的历程的 博客 ⛺️不负时光&#xff0c;不负己✈️ 文章目录 C/C内存模型C语言动态内存管理mallocrealloccallocfree C动态内存申请new 操作符delete 操作符注意事项用法示例 operator new和operator delete函数内存泄露 C/C内存模型 让我们先来看看这段代码&a…

四、SPI——2、NOR FLASH

一、NOR FLASH介绍 FLASH是常用的用于储存数据的半导体器件&#xff0c;它具有容量大&#xff0c;可重复擦写、按“扇区/块”擦除、掉电后数据可继续保存的特性。 FLASH是有一个物理特性&#xff1a;只能写0&#xff0c;不能写1&#xff0c;写1靠擦除。 FLASH主要有NOR Flash和…

【JavaEE初阶】JVM内存划分和类加载过程以及垃圾回收

目录 &#x1f332;内存划分 &#x1f6a9;堆&#xff08;线程共享&#xff09; &#x1f6a9;栈 &#x1f6a9;元数据区 &#x1f343;类加载过程 &#x1f6a9;双亲委派模型 &#x1f384;垃圾回收机制&#xff08;GC&#xff09; &#x1f6a9;找到谁是垃圾(不被继续…