大模型技术开发与应用
LLM背景知识介绍:
大语言模型是一种人工智能模型,旨在理解和生成人类语言.大语言模型可以处理多种自然语言任务,如文本分类,问答,翻译,对话等等.
通常,大语言模型(LLM)是指包含数千亿(或更多)参数的语言模型(目前定义参数数量超过10B的模型为大语言模型),这些参数是在大量文本数据上的训练的,例如模型GPT-3,ChatGPT,PaLM,BLOOM和 LLaMA等.
截止23年3月底,语言模型发展走过了三个阶段:
第一阶段 :设计一系列的自监督训练目标(MLM、NSP等),设计新颖的模型架构(Transformer),遵循Pre-training和Fine-tuning范式。典型代表是BERT、GPT、XLNet等;
第二阶段 :逐步扩大模型参数和训练语料规模,探索不同类型的架构。典型代表是BART、T5、GPT-3等;
第三阶段 :走向AIGC(Artificial Intelligent Generated Content)时代,模型参数规模步入千万亿,模型架构为自回归架构,大模型走向对话式、生成式、多模态时代,更加注重与人类交互进行对齐,实现可靠、安全、无毒的模型。典型代表是InstructionGPT、ChatGPT、Bard、GPT-4等。
语言模型 (Language Model, LM)¶
语言模型(Language Model)旨在建模词汇序列的生成概率,提升机器的语言智能水平,使机器能够模拟人类说话、写作的模式进行自动文本输出。
通俗理解: 用来计算一个句子的概率的模型,也就是判断一句话是否是人话的概率.
标准定义:对于某个句子序列, 如S = {W1, W2, W3, …, Wn}, 语言模型就是计算该序列发生的概率, 即P(S). 如果给定的词序列符合语用习惯, 则给出高概率, 否则给出低概率.
语言模型技术的发展可以总结为四个阶段:
基于规则和统计的语言模型
神经语言模型
预训练语言模型
大语言模型
神经网络语言模型
基于N-gram语言模型以上的问题,以及随着神经网络技术的发展,人们开始尝试使用神经网络来建立语言模型
基于Transformer的预训练语言模型
Transformer模型由一些编码器和解码器层组成(见图),学习复杂语义信息的能力强,很多主流预训练模型在提取特征时都会选择Transformer结构,并产生了一系列的基于Transformer的预训练模型,包括GPT、BERT、T5等.这些模型能够从大量的通用文本数据中学习大量的语言表示,并将这些知识运用到下游任务中,获得了较好的效果.
预训练语言模型的使用方式:
1.预训练:预训练指建立基本的模型,先在一些比较基础的数据集、语料库上进行训练,然后按照具体任务训练,学习数据的普遍特征。
2.微调:微调指在具体的下游任务中使用预训练好的模型进行迁移学习,以获取更好的泛化效果。
预训练语言模型的特点:
优点:更强大的泛化能力,丰富的语义表示,可以有效防止过拟合。
缺点:计算资源需求大,可解释性差等
大语言模型
随着对预训练语言模型研究的开展,人们逐渐发现可能存在一种标度定律(Scaling Law),即随着预训练模型参数的指数级提升,其语言模型性能也会线性上升。2020年,OpenAI发布了参数量高达1750亿的GPT-3,首次展示了大语言模型的性能。
相较于此前的参数量较小的预训练语言模型,例如,3.3亿参数的Bert-large和17亿参数的GPT-2,GPT-3展现了在Few-shot语言任务能力上的飞跃,并具备了预训练语言模型不具备的一些能力。后续将这种现象称为能力涌现。例如,GPT-3能进行上下文学习,在不调整权重的情况下仅依据用户给出的任务示例完成后续任务。这种能力方面的飞跃引发研究界在大语言模型上的研究热潮,各大科技巨头纷纷推出参数量巨大的语言模型,例如,Meta公司1300亿参数量的LLaMA模型以及谷歌公司5400亿参数量的PaLM。国内如百度推出的文心一言ERNIE系列、清华大学团队推出的GLM系列,等等。
大语言模型的特点:
优点:像“人类”一样智能,具备了能与人类沟通聊天的能力,甚至具备了使用插件进行自动信息检索的能力
缺点:参数量大,算力要求高、生成部分有害的、有偏见的内容等等
语言模型的评估指标
BLEU
BLEU:BLEU (双语评估替补)分数是评估一种语言翻译成另一种语言的文本质量的指标。它将“质量”的好坏定义为与人类翻译结果的一致性程度。
BLEU算法实际上就是在判断两个句子的相似程度. BLEU 的分数取值范围是 0~1,分数越接近1,说明翻译的质量越高。
BLEU有许多变种,根据n-gram可以划分成多种评价指标,常见的评价指标有BLEU-1、BLEU-2、BLEU-3、BLEU-4四种,其中n-gram指的是连续的单词个数为n,BLEU-1衡量的是单词级别的准确性,更高阶的BLEU可以衡量句子的流畅性.实践中,通常是取N=1~4,然后对进行加权平均
OUGE
ROUGE指标是在机器翻译、自动摘要、问答生成等领域常见的评估指标。ROUGE通过将模型生成的摘要或者回答与参考答案(一般是人工生成的)进行比较计算,得到对应的得分。
ROUGE指标与BLEU指标非常类似,均可用来衡量生成结果和标准结果的匹配程度,不同的是ROUGE基于召回率,BLEU更看重准确率。
ROUGE分为四种方法:ROUGE-N, ROUGE-L, ROUGE-W, ROUGE-S.
困惑度PPL(perplexity)
PPL用来度量一个概率分布或概率模型预测样本的好坏程度。
PPL基本思想:
给测试集的句子赋予较高概率值的语言模型较好,当语言模型训练完之后,测试集中的句子都是正常的句子,那么训练好的模型就是在测试集上的概率越高越好.
基本公式(两种方式):
由公式可知,句子概率越大,语言模型越好,迷惑度越小。