引言
上篇文章我们通过Sentence-Bert提出的分类目标函数来训练句子嵌入模型,本文同样基于Sentence-Bert的架构,但改用回归目标函数。
架构
如上图,计算两个句嵌入
u
\pmb u
u和
v
\pmb v
v之间的余弦相似度,然后可以使用均方误差(mean-squared-error)作为目标函数。
L
=
∣
∣
y
−
cosine_sim
(
u
,
v
)
∣
∣
2
\mathcal L = ||y - \text{cosine\_sim}(\pmb u,\pmb v)||_2
L=∣∣y−cosine_sim(u,v)∣∣2
这里的
y
y
y是真实标签。
回归目标函数的预测不再是整数标签1或0了,而可以为数值。比如对于给定的句子对,可以计算相似度得分。此时推理流程与训练完全相同。
实现
实现采用类似Huggingface的形式,每个文件夹下面有一种模型。分为modeling
、arguments
、trainer
等不同的文件。不同的架构放置在不同的文件夹内。
modeling.py
:
from dataclasses import dataclass
import torch
from torch import Tensor, nn
from transformers.file_utils import ModelOutput
from transformers import (
AutoModel,
AutoTokenizer,
)
import numpy as np
from tqdm.autonotebook import trange
from typing import Optional
@dataclass
class BiOutput(ModelOutput):
loss: Optional[Tensor] = None
scores: Optional[Tensor] = None
class SentenceBert(nn.Module):
def __init__(
self,
model_name: str,
trust_remote_code: bool = True,
max_length: int = None,
num_classes: int = 2,
pooling_mode: str = "mean",
normalize_embeddings: bool = False,
) -> None:
super().__init__()
self.model_name = model_name
self.normalize_embeddings = normalize_embeddings
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.tokenizer = AutoTokenizer.from_pretrained(
model_name, trust_remote_code=trust_remote_code
)
self.model = AutoModel.from_pretrained(
model_name, trust_remote_code=trust_remote_code
).to(self.device)
self.max_length = max_length
self.pooling_mode = pooling_mode
self.loss_fct = nn.MSELoss()
def sentence_embedding(self, last_hidden_state, attention_mask):
if self.pooling_mode == "mean":
attention_mask = attention_mask.unsqueeze(-1).float()
return torch.sum(last_hidden_state * attention_mask, dim=1) / torch.clamp(
attention_mask.sum(1), min=1e-9
)
else:
# cls
return last_hidden_state[:, 0]
def encode(
self,
sentences: str | list[str],
batch_size: int = 64,
convert_to_tensor: bool = True,
show_progress_bar: bool = False,
):
if isinstance(sentences, str):
sentences = [sentences]
all_embeddings = []
for start_index in trange(
0, len(sentences), batch_size, desc="Batches", disable=not show_progress_bar
):
batch = sentences[start_index : start_index + batch_size]
features = self.tokenizer(
batch,
padding=True,
truncation=True,
return_tensors="pt",
return_attention_mask=True,
max_length=self.max_length,
).to(self.device)
out_features = self.model(**features, return_dict=True)
embeddings = self.sentence_embedding(
out_features.last_hidden_state, features["attention_mask"]
)
if not self.training:
embeddings = embeddings.detach()
if self.normalize_embeddings:
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
if not convert_to_tensor:
embeddings = embeddings.cpu()
all_embeddings.extend(embeddings)
if convert_to_tensor:
all_embeddings = torch.stack(all_embeddings)
else:
all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings])
return all_embeddings
def compute_loss(self, scores, labels):
labels = torch.tensor(labels).float().to(self.device)
return self.loss_fct(scores, labels.view(-1))
def forward(self, source, target, labels) -> BiOutput:
"""
Args:
source :
target :
"""
source_embed = self.encode(source)
target_embed = self.encode(target)
scores = torch.cosine_similarity(source_embed, target_embed)
loss = self.compute_loss(scores, labels)
return BiOutput(loss, scores)
def save_pretrained(self, output_dir: str):
state_dict = self.model.state_dict()
state_dict = type(state_dict)(
{k: v.clone().cpu().contiguous() for k, v in state_dict.items()}
)
self.model.save_pretrained(output_dir, state_dict=state_dict)
整个模型的实现放到modeling.py
文件中。
arguments.py
:
from dataclasses import dataclass, field
from typing import Optional
import os
@dataclass
class ModelArguments:
model_name_or_path: str = field(
metadata={
"help": "Path to pretrained model"
}
)
config_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained config name or path if not the same as model_name"
},
)
tokenizer_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained tokenizer name or path if not the same as model_name"
},
)
@dataclass
class DataArguments:
train_data_path: str = field(
default=None, metadata={"help": "Path to train corpus"}
)
eval_data_path: str = field(default=None, metadata={"help": "Path to eval corpus"})
max_length: int = field(
default=512,
metadata={
"help": "The maximum total input sequence length after tokenization for input text."
},
)
def __post_init__(self):
if not os.path.exists(self.train_data_path):
raise FileNotFoundError(
f"cannot find file: {self.train_data_path}, please set a true path"
)
if not os.path.exists(self.eval_data_path):
raise FileNotFoundError(
f"cannot find file: {self.eval_data_path}, please set a true path"
)
定义了模型和数据相关参数。
dataset.py
:
from torch.utils.data import Dataset
from datasets import Dataset as dt
import pandas as pd
from utils import build_dataframe_from_csv
class PairDataset(Dataset):
def __init__(self, data_path: str) -> None:
df = build_dataframe_from_csv(data_path)
self.dataset = dt.from_pandas(df, split="train")
self.total_len = len(self.dataset)
def __len__(self):
return self.total_len
def __getitem__(self, index) -> dict[str, str]:
query1 = self.dataset[index]["query1"]
query2 = self.dataset[index]["query2"]
label = self.dataset[index]["label"]
return {"query1": query1, "query2": query2, "label": label}
class PairCollator:
def __call__(self, features) -> dict[str, list[str]]:
queries1 = []
queries2 = []
labels = []
for feature in features:
queries1.append(feature["query1"])
queries2.append(feature["query2"])
labels.append(feature["label"])
return {"source": queries1, "target": queries2, "labels": labels}
数据集类考虑了LCQMC数据集的格式,即成对的语句和一个数值标签。类似:
Hello. Hi. 1
Nice to see you. Nice 0
trainer.py
:
import torch
from transformers.trainer import Trainer
from typing import Optional
import os
import logging
from modeling import SentenceBert
TRAINING_ARGS_NAME = "training_args.bin"
logger = logging.getLogger(__name__)
class BiTrainer(Trainer):
def compute_loss(self, model: SentenceBert, inputs, return_outputs=False):
outputs = model(**inputs)
loss = outputs.loss
return (loss, outputs) if return_outputs else loss
def _save(self, output_dir: Optional[str] = None, state_dict=None):
# If we are executing this function, we are the process zero, so we don't check for that.
output_dir = output_dir if output_dir is not None else self.args.output_dir
os.makedirs(output_dir, exist_ok=True)
logger.info(f"Saving model checkpoint to {output_dir}")
self.model.save_pretrained(output_dir)
if self.tokenizer is not None:
self.tokenizer.save_pretrained(output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))
继承🤗 Transformers的Trainer
类,重写了compute_loss
和_save
方法。
这样我们就可以利用🤗 Transformers来训练我们的模型了。
utils.py
:
import torch
import pandas as pd
from scipy.stats import pearsonr, spearmanr
from typing import Tuple
def build_dataframe_from_csv(dataset_csv: str) -> pd.DataFrame:
df = pd.read_csv(
dataset_csv,
sep="\t",
header=None,
names=["query1", "query2", "label"],
)
return df
def compute_spearmanr(x, y):
return spearmanr(x, y).correlation
def compute_pearsonr(x, y):
return pearsonr(x, y)[0]
def find_best_acc_and_threshold(scores, labels, high_score_more_similar: bool):
"""Copied from https://github.com/UKPLab/sentence-transformers/tree/master"""
assert len(scores) == len(labels)
rows = list(zip(scores, labels))
rows = sorted(rows, key=lambda x: x[0], reverse=high_score_more_similar)
print(rows)
max_acc = 0
best_threshold = -1
# positive examples number so far
positive_so_far = 0
# remain negative examples
remaining_negatives = sum(labels == 0)
for i in range(len(rows) - 1):
score, label = rows[i]
if label == 1:
positive_so_far += 1
else:
remaining_negatives -= 1
acc = (positive_so_far + remaining_negatives) / len(labels)
if acc > max_acc:
max_acc = acc
best_threshold = (rows[i][0] + rows[i + 1][0]) / 2
return max_acc, best_threshold
def metrics(y: torch.Tensor, y_pred: torch.Tensor) -> Tuple[float, float, float, float]:
TP = ((y_pred == 1) & (y == 1)).sum().float() # True Positive
TN = ((y_pred == 0) & (y == 0)).sum().float() # True Negative
FN = ((y_pred == 0) & (y == 1)).sum().float() # False Negatvie
FP = ((y_pred == 1) & (y == 0)).sum().float() # False Positive
p = TP / (TP + FP).clamp(min=1e-8) # Precision
r = TP / (TP + FN).clamp(min=1e-8) # Recall
F1 = 2 * r * p / (r + p).clamp(min=1e-8) # F1 score
acc = (TP + TN) / (TP + TN + FP + FN).clamp(min=1e-8) # Accurary
return acc, p, r, F1
def compute_metrics(predicts, labels):
return metrics(labels, predicts)
定义了一些帮助函数,从sentence-transformers库中拷贝了寻找最佳准确率阈值的实现find_best_acc_and_threshold
。
除了准确率,还计算了句嵌入的余弦相似度与真实标签之间的斯皮尔曼等级相关系数指标。
最后定义训练和测试脚本。
train.py
:
from transformers import set_seed, HfArgumentParser, TrainingArguments
import logging
from pathlib import Path
from datetime import datetime
from modeling import SentenceBert
from trainer import BiTrainer
from arguments import DataArguments, ModelArguments
from dataset import PairCollator, PairDataset
logger = logging.getLogger(__name__)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
def main():
parser = HfArgumentParser((TrainingArguments, DataArguments, ModelArguments))
training_args, data_args, model_args = parser.parse_args_into_dataclasses()
# 根据当前时间生成输出目录
output_dir = f"{training_args.output_dir}/{model_args.model_name_or_path.replace('/', '-')}-{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}"
training_args.output_dir = output_dir
logger.info(f"Training parameters {training_args}")
logger.info(f"Data parameters {data_args}")
logger.info(f"Model parameters {model_args}")
# 设置随机种子
set_seed(training_args.seed)
# 加载预训练模型
model = SentenceBert(
model_args.model_name_or_path,
trust_remote_code=True,
max_length=data_args.max_length,
)
tokenizer = model.tokenizer
# 构建训练和测试集
train_dataset = PairDataset(data_args.train_data_path)
eval_dataset = PairDataset(data_args.eval_data_path)
# 传入参数
trainer = BiTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=PairCollator(),
tokenizer=tokenizer,
)
Path(training_args.output_dir).mkdir(parents=True, exist_ok=True)
# 开始训练
trainer.train()
trainer.save_model()
if __name__ == "__main__":
main()
训练
基于train.py
定义了train.sh
传入相关参数:
timestamp=$(date +%Y%m%d%H%M)
logfile="train_${timestamp}.log"
# change CUDA_VISIBLE_DEVICES
CUDA_VISIBLE_DEVICES=3 nohup python train.py \
--model_name_or_path=hfl/chinese-macbert-large \
--output_dir=output \
--train_data_path=data/train.txt \
--eval_data_path=data/dev.txt \
--num_train_epochs=3 \
--save_total_limit=5 \
--learning_rate=2e-5 \
--weight_decay=0.01 \
--warmup_ratio=0.01 \
--bf16=True \
--eval_strategy=epoch \
--save_strategy=epoch \
--per_device_train_batch_size=64 \
--report_to="none" \
--remove_unused_columns=False \
--max_length=128 \
> "$logfile" 2>&1 &
以上参数根据个人环境修改,这里使用的是哈工大的chinese-macbert-large
预训练模型。
注意:
--remove_unused_columns
是必须的。- 通过
bf16=True
可以加速训练同时不影响效果。 - 其他参数可以自己调整。
100%|██████████| 18655/18655 [1:17:23<00:00, 4.44it/s]
100%|██████████| 18655/18655 [1:17:23<00:00, 4.02it/s]
09/02/2024 21:02:41 - INFO - trainer - Saving model checkpoint to output/hfl-chinese-macbert-large-2024-09-02_19-45-12
{'eval_loss': 0.09294428676366806, 'eval_runtime': 56.1261, 'eval_samples_per_second': 156.825, 'eval_steps_per_second': 19.617, 'epoch': 5.0}
{'train_runtime': 4643.261, 'train_samples_per_second': 257.11, 'train_steps_per_second': 4.018, 'train_loss': 0.049199433276877584, 'epoch': 5.0}
这里训练了5轮,我们拿最后保存的模型output/hfl-chinese-macbert-large-2024-09-02_19-45-12
进行测试。
参数忘改了,为了便于比较,实际上下面的结果是以3轮的训练结果验证的。
测试
test.py
: 测试脚本见后文的完整代码。
test.sh
:
# change CUDA_VISIBLE_DEVICES
CUDA_VISIBLE_DEVICES=0 python test.py \
--model_name_or_path=output/hfl-chinese-macbert-large-2024-09-02_19-45-12/checkpoint-11193 \
--test_data_path=data/test.txt
输出:
TestArguments(model_name_or_path='output/hfl-chinese-macbert-large-2024-09-02_19-45-12/checkpoint-11193', test_data_path='data/test.txt', max_length=64, batch_size=128)
Batches: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 98/98 [00:11<00:00, 8.77it/s]
Batches: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 98/98 [00:11<00:00, 8.89it/s]
max_acc: 0.8832, best_threshold: 0.794167
spearman corr: 0.7795 | pearson_corr corr: 0.7668 | compute time: 22.25s
accuracy=0.883 precision=0.876 recal=0.893 f1 score=0.8843
测试集上的准确率达到88.3%,这种以回归目标函数进行训练的效果没有分类的好。
完整代码
完整代码: →点此←
本文代码是和某次commit相关的,Master分支上的代码随时可能会被优化。
参考
- [论文笔记]Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks