科研里面优化算法都用的多,尤其是各种动物园里面的智能仿生优化算法,但是目前都是MATLAB的代码多,python几乎没有什么包,这次把优化算法系列的代码都从底层手写开始。
需要看以前的优化算法文章可以参考:Python优化算法_阡之尘埃的博客-CSDN博客
之前写过蝴蝶优化算法的文章,现在有很多新的蝴蝶优化算法,都是进行了一些改进。本次带来的是混沌反馈共享和群体协同效应的蝴蝶优化算法算法,当然也会和普通的蝴蝶优化进行对比。
这是文章的摘要:
针对蝴蝶优化算法(BOA)寻优精度低和易陷入局部最优等缺点,提出了混沌反馈共享和群体协同效
应的蝴蝶优化算法(CFSBOA)。首先,利用Hénon 混沌初始化种群,能够使种群尽可能地覆盖搜索盲区,增加
种群多样性,提高算法寻优性能;其次,利用反馈控制电路中正负反馈作用机制的思想,构建蝴蝶之间的反馈
共享交流网络,使得蝴蝶个体能够接收来自多个方向的信息,帮助种群定位最优解的位置并执行精细搜索,增
强算法逃离局部最优的能力和加快算法收敛的速度;最后,利用群体协同效应机制,提高和平衡全局与局部搜
索的能力,增强算法的全局和局部的寻优能力。使用不同维度的基准测试函数、统计检验、Wilcoxon 检验及多
类型的CEC2014 部分函数验证改进蝴蝶优化算法的性能,并与新改进的蝴蝶算法及其他群智能算法进行对
比,实验结果表明该算法具有明显优势。
文章和理论看看就行,主要是代码。本文都是python实现。文章和代码文件都在文末有获取方式。
代码实现
导入包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
import copy
plt.rcParams ['font.sans-serif'] ='SimHei' #显示中文
plt.rcParams ['axes.unicode_minus']=False #显示负号
warnings.filterwarnings('ignore')
plt.rcParams['font.family'] = 'DejaVu Sans'
只给代码不给使用案例就都是钓鱼的。我这里给出代码,也要给使用案例,先采用一些简单的优化算法常用的测试函数。由于都优化算法需要测试函数,我们先都定义好常见的23个函数:
'''F1函数'''
def F1(X):
Results=np.sum(X**2)
return Results
'''F2函数'''
def F2(X):
Results=np.sum(np.abs(X))+np.prod(np.abs(X))
return Results
'''F3函数'''
def F3(X):
dim=X.shape[0]
Results=0
for i in range(dim):
Results=Results+np.sum(X[0:i+1])**2
return Results
'''F4函数'''
def F4(X):
Results=np.max(np.abs(X))
return Results
'''F5函数'''
def F5(X):
dim=X.shape[0]
Results=np.sum(100*(X[1:dim]-(X[0:dim-1]**2))**2+(X[0:dim-1]-1)**2)
return Results
'''F6函数'''
def F6(X):
Results=np.sum(np.abs(X+0.5)**2)
return Results
'''F7函数'''
def F7(X):
dim = X.shape[0]
Temp = np.arange(1,dim+1,1)
Results=np.sum(Temp*(X**4))+np.random.random()
return Results
'''F8函数'''
def F8(X):
Results=np.sum(-X*np.sin(np.sqrt(np.abs(X))))
return Results
'''F9函数'''
def F9(X):
dim=X.shape[0]
Results=np.sum(X**2-10*np.cos(2*np.pi*X))+10*dim
return Results
'''F10函数'''
def F10(X):
dim=X.shape[0]
Results=-20*np.exp(-0.2*np.sqrt(np.sum(X**2)/dim))-np.exp(np.sum(np.cos(2*np.pi*X))/dim)+20+np.exp(1)
return Results
'''F11函数'''
def F11(X):
dim=X.shape[0]
Temp=np.arange(1,dim+1,+1)
Results=np.sum(X**2)/4000-np.prod(np.cos(X/np.sqrt(Temp)))+1
return Results
'''F12函数'''
def Ufun(x,a,k,m):
Results=k*((x-a)**m)*(x>a)+k*((-x-a)**m)*(x<-a)
return Results
def F12(X):
dim=X.shape[0]
Results=(np.pi/dim)*(10*((np.sin(np.pi*(1+(X[0]+1)/4)))**2)+\
np.sum((((X[0:dim-1]+1)/4)**2)*(1+10*((np.sin(np.pi*(1+X[1:dim]+1)/4)))**2)+((X[dim-1]+1)/4)**2))+\
np.sum(Ufun(X,10,100,4))
return Results
'''F13函数'''
def Ufun(x,a,k,m):
Results=k*((x-a)**m)*(x>a)+k*((-x-a)**m)*(x<-a)
return Results
def F13(X):
dim=X.shape[0]
Results=0.1*((np.sin(3*np.pi*X[0]))**2+np.sum((X[0:dim-1]-1)**2*(1+(np.sin(3*np.pi*X[1:dim]))**2))+\
((X[dim-1]-1)**2)*(1+(np.sin(2*np.pi*X[dim-1]))**2))+np.sum(Ufun(X,5,100,4))
return Results
'''F14函数'''
def F14(X):
aS=np.array([[-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32],\
[-32,-32,-32,-32,-32,-16,-16,-16,-16,-16,0,0,0,0,0,16,16,16,16,16,32,32,32,32,32]])
bS=np.zeros(25)
for i in range(25):
bS[i]=np.sum((X-aS[:,i])**6)
Temp=np.arange(1,26,1)
Results=(1/500+np.sum(1/(Temp+bS)))**(-1)
return Results
'''F15函数'''
def F15(X):
aK=np.array([0.1957,0.1947,0.1735,0.16,0.0844,0.0627,0.0456,0.0342,0.0323,0.0235,0.0246])
bK=np.array([0.25,0.5,1,2,4,6,8,10,12,14,16])
bK=1/bK
Results=np.sum((aK-((X[0]*(bK**2+X[1]*bK))/(bK**2+X[2]*bK+X[3])))**2)
return Results
'''F16函数'''
def F16(X):
Results=4*(X[0]**2)-2.1*(X[0]**4)+(X[0]**6)/3+X[0]*X[1]-4*(X[1]**2)+4*(X[1]**4)
return Results
'''F17函数'''
def F17(X):
Results=(X[1]-(X[0]**2)*5.1/(4*(np.pi**2))+(5/np.pi)*X[0]-6)**2+10*(1-1/(8*np.pi))*np.cos(X[0])+10
return Results
'''F18函数'''
def F18(X):
Results=(1+(X[0]+X[1]+1)**2*(19-14*X[0]+3*(X[0]**2)-14*X[1]+6*X[0]*X[1]+3*X[1]**2))*\
(30+(2*X[0]-3*X[1])**2*(18-32*X[0]+12*(X[0]**2)+48*X[1]-36*X[0]*X[1]+27*(X[1]**2)))
return Results
'''F19函数'''
def F19(X):
aH=np.array([[3,10,30],[0.1,10,35],[3,10,30],[0.1,10,35]])
cH=np.array([1,1.2,3,3.2])
pH=np.array([[0.3689,0.117,0.2673],[0.4699,0.4387,0.747],[0.1091,0.8732,0.5547],[0.03815,0.5743,0.8828]])
Results=0
for i in range(4):
Results=Results-cH[i]*np.exp(-(np.sum(aH[i,:]*((X-pH[i,:]))**2)))
return Results
'''F20函数'''
def F20(X):
aH=np.array([[10,3,17,3.5,1.7,8],[0.05,10,17,0.1,8,14],[3,3.5,1.7,10,17,8],[17,8,0.05,10,0.1,14]])
cH=np.array([1,1.2,3,3.2])
pH=np.array([[0.1312,0.1696,0.5569,0.0124,0.8283,0.5886],[0.2329,0.4135,0.8307,0.3736,0.1004,0.9991],\
[0.2348,0.1415,0.3522,0.2883,0.3047,0.6650],[0.4047,0.8828,0.8732,0.5743,0.1091,0.0381]])
Results=0
for i in range(4):
Results=Results-cH[i]*np.exp(-(np.sum(aH[i,:]*((X-pH[i,:]))**2)))
return Results
'''F21函数'''
def F21(X):
aSH=np.array([[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],\
[2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]])
cSH=np.array([0.1,0.2,0.2,0.4,0.4,0.6,0.3,0.7,0.5,0.5])
Results=0
for i in range(5):
Results=Results-(np.dot((X-aSH[i,:]),(X-aSH[i,:]).T)+cSH[i])**(-1)
return Results
'''F22函数'''
def F22(X):
aSH=np.array([[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],\
[2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]])
cSH=np.array([0.1,0.2,0.2,0.4,0.4,0.6,0.3,0.7,0.5,0.5])
Results=0
for i in range(7):
Results=Results-(np.dot((X-aSH[i,:]),(X-aSH[i,:]).T)+cSH[i])**(-1)
return Results
'''F23函数'''
def F23(X):
aSH=np.array([[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],\
[2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]])
cSH=np.array([0.1,0.2,0.2,0.4,0.4,0.6,0.3,0.7,0.5,0.5])
Results=0
for i in range(10):
Results=Results-(np.dot((X-aSH[i,:]),(X-aSH[i,:]).T)+cSH[i])**(-1)
return Results
把他们的参数设置都用字典装起来
'F11': F11,'F12': F12,'F13': F13,'F14': F14,'F15': F15,'F16': F16,'F17': F17,
'F18': F18,'F19': F19,'F20': F20,'F21': F21,'F22': F22,'F23': F23}
Funobject.keys()
#维度,搜索区间下界,搜索区间上界,最优值
Fundim={'F1': [30,-100,100],'F2': [30,-10,10],'F3': [30,-100,100],'F4': [30,-10,10],'F5': [30,-30,30],
'F6': [30,-100,100],'F7': [30,-1.28,1.28],'F8': [30,-500,500],'F9':[30,-5.12,5.12],'F10': [30,-32,32],
'F11': [30,-600,600],'F12': [30,-50,50],'F13': [30,-50,50],'F14': [2,-65,65],'F15':[4,-5,5],'F16': [2,-5,5],
'F17':[2,-5,5],'F18': [2,-2,2],'F19': [3,0,1],'F20': [6,0,1],'F21':[4,0,10],'F22': [4,0,10],'F23': [4,0,10]}
Fundim字典里面装的是对应这个函数的 ,维度,搜索区间下界,搜索区间上界。这样写好方便我们去遍历测试所有的函数。
混沌反馈共享和群体协同效应的蝴蝶优化算法
终于到了算法的主代码阶段了,这里还会给出普通的蝴蝶优化算法的代码。
import numpy as np
import random
import copy
''' Henon混沌种群初始化函数 '''
def initial(pop, dim, ub, lb):
x0=0
y0=0
X = np.zeros([pop, dim])
for i in range(pop):
for j in range(dim):
x=1-1.4*x0**2+0.3*y0
y=x0
z=(x-0.3)/(1.4-0.3)
X[i, j] = z * (ub[j] - lb[j]) + lb[j]
x0=x
y0=y
return X, lb, ub
'''边界检查函数'''
def BorderCheck(X, ub, lb, pop, dim):
for i in range(pop):
for j in range(dim):
if X[i, j] > ub[j]:
X[i, j] = ub[j]
elif X[i, j] < lb[j]:
X[i, j] = lb[j]
return X
'''计算适应度函数'''
def CaculateFitness(X, fun):
pop = X.shape[0]
fitness = np.zeros([pop, 1])
for i in range(pop):
fitness[i] = fun(X[i, :])
return fitness
'''适应度排序'''
def SortFitness(Fit):
fitness = np.sort(Fit, axis=0)
index = np.argsort(Fit, axis=0)
return fitness, index
'''根据适应度对位置进行排序'''
def SortPosition(X, index):
Xnew = np.zeros(X.shape)
for i in range(X.shape[0]):
Xnew[i, :] = X[index[i], :]
return Xnew
def sensory_modality_NEW(x,Ngen):
y=x+(0.025/(x*Ngen))
return y
'''改进蝴蝶优化算法'''
def CFSBOA(pop, dim, lb, ub, MaxIter, fun):
p=0.8 #probabibility switch
power_exponent=0.1
sensory_modality=0.01
X, lb, ub = initial(pop, dim, ub, lb) # 初始化种群
fitness = CaculateFitness(X, fun) # 计算适应度值
indexBest = np.argmin(fitness)
GbestScore = fitness[indexBest]
GbestPositon = np.zeros([1,dim])
GbestPositon[0,:] = X[indexBest, :]
X_new = copy.copy(X)
Curve = np.zeros([MaxIter, 1])
for t in range(MaxIter):
for i in range(pop):
FP = sensory_modality*(fitness[i]**power_exponent)
#改进点:反馈机制
indexR=np.random.randint(pop)#随机选择一个蝴蝶
Fnormal=fitness/max(fitness) #归一化到0到1
Fmax=np.max(Fnormal)#种群最大适应度值
Fmin=np.min(Fnormal)#种群最小适应度值
alpha = (Fmax - Fmin)*np.random.random() + Fmin
theta = 1/(1 + np.exp(-t))
Temp = np.zeros([1,dim])
if fitness[indexR]<fitness[i]:
Temp[0,:]=X[i,:] + (GbestPositon - X[i,:])*alpha +\
(X[indexR,:] - X[i,:])*(1 - alpha) + theta
else:
Temp[0,:] = X[i,:] + (GbestPositon - X[i,:])*alpha+theta
for j in range(dim):
if Temp[0,j]>ub[j]:
Temp[0,j]=ub[j]
if Temp[0,j]<lb[j]:
Temp[0,j]=lb[j]
#print(Temp[0])
if fun(Temp[0]).mean()<fun(X[i,:]):
X[i,:]=copy.copy(Temp)
fitness[i] = fun(Temp[0]).mean()
#改进点:群体协同效应位置更新机制
#黄金正弦参数
r=np.random.random()
r1=2*np.pi*r
r2=r*np.pi
gold=(np.sqrt(5)-1)/2
x1=-np.pi+(1-gold)*2*np.pi
x2=-np.pi+gold*2*np.pi
if random.random()>p:
X_new[i,:] = X[i,:]*np.abs(np.sin(r1)) - r2*np.sin(r1)*np.abs(x1*GbestPositon-x2*X[i,:])
else:
JK1=np.random.randint(pop)
JK2=np.random.randint(pop)
X_new[i,:] = X[i,:]*np.abs(np.sin(r1)) - r2*np.sin(r1)*np.abs(x1*X[JK1,:]-x2*X[JK2,:])
for j in range(dim):
if X_new[i,j] > ub[j]:
X_new[i, j] = ub[j]
if X_new[i,j] < lb[j]:
X_new[i, j] = lb[j]
#如果更优才更新
if(fun(X_new[i,:])<fitness[i]):
X[i,:] = copy.copy(X_new[i,:])
X = BorderCheck(X, ub, lb, pop, dim) # 边界检测
fitness = CaculateFitness(X, fun) # 计算适应度值
indexBest = np.argmin(fitness)
if fitness[indexBest] <= GbestScore: # 更新全局最优
GbestScore = copy.copy(fitness[indexBest])
GbestPositon[0,:] = copy.copy(X[indexBest, :])
Curve[t] = GbestScore
#更新sensory_modality
sensory_modality = sensory_modality_NEW(sensory_modality, t+1)
return GbestScore, GbestPositon, Curve
普通蝴蝶优化(BOA):
import numpy as np
import random
import copy
def initialization(pop,ub,lb,dim):
''' 种群初始化函数'''
'''
pop:为种群数量
dim:每个个体的维度
ub:每个维度的变量上边界,维度为[dim,1]
lb:为每个维度的变量下边界,维度为[dim,1]
X:为输出的种群,维度[pop,dim]
'''
X = np.zeros([pop,dim]) #声明空间
for i in range(pop):
for j in range(dim):
X[i,j]=(ub[j]-lb[j])*np.random.random()+lb[j] #生成[lb,ub]之间的随机数
return X
def BorderCheck(X,ub,lb,pop,dim):
'''边界检查函数'''
'''
dim:为每个个体数据的维度大小
X:为输入数据,维度为[pop,dim]
ub:为个体数据上边界,维度为[dim,1]
lb:为个体数据下边界,维度为[dim,1]
pop:为种群数量
'''
for i in range(pop):
for j in range(dim):
if X[i,j]>ub[j]:
X[i,j] = ub[j]
elif X[i,j]<lb[j]:
X[i,j] = lb[j]
return X
def CaculateFitness(X,fun):
'''计算种群的所有个体的适应度值'''
pop = X.shape[0]
fitness = np.zeros([pop, 1])
for i in range(pop):
fitness[i] = fun(X[i, :])
return fitness
def SortFitness(Fit):
'''适应度值排序'''
'''
输入为适应度值
输出为排序后的适应度值,和索引
'''
fitness = np.sort(Fit, axis=0)
index = np.argsort(Fit, axis=0)
return fitness,index
def SortPosition(X,index):
'''根据适应度值对位置进行排序'''
Xnew = np.zeros(X.shape)
for i in range(X.shape[0]):
Xnew[i,:] = X[index[i],:]
return Xnew
def BOA(pop, dim, lb, ub, MaxIter, fun):
'''蝴蝶优化算法'''
'''
输入:
pop:为种群数量
dim:每个个体的维度
ub:为个体上边界信息,维度为[1,dim]
lb:为个体下边界信息,维度为[1,dim]
fun:为适应度函数接口
MaxIter:为最大迭代次数
输出:
GbestScore:最优解对应的适应度值
GbestPositon:最优解
Curve:迭代曲线
'''
p=0.8 #切换概率
power_exponent=0.1 #功率指数a
sensory_modality=0.1 #感知形态c
X = initialization(pop,ub,lb,dim) # 初始化种群
fitness = CaculateFitness(X, fun) # 计算适应度值
indexBest = np.argmin(fitness) #寻找最优适应度位置
GbestScore = fitness[indexBest] #记录最优适应度值
GbestPositon = np.zeros([1,dim])
GbestPositon[0,:] = X[indexBest, :]
X_new = copy.copy(X)
Curve = np.zeros([MaxIter, 1])
for t in range(MaxIter):
print("第"+str(t)+"次迭代")
for i in range(pop):
FP = sensory_modality*(fitness[i]**power_exponent) #刺激强度I的计算
if random.random()<p: #全局搜索
dis = random.random()*random.random()*GbestPositon - X[i,:]
Temp = np.matrix(dis*FP)
X_new[i,:] = X[i,:] + Temp[0,:]
else:#局部搜索
Temp = range(pop)
JK = random.sample(Temp,pop) #随机选择个体
dis=random.random()*random.random()*X[JK[0],:]-X[JK[1],:]
Temp = np.matrix(dis*FP)
X_new[i,:] = X[i,:] + Temp[0,:]
for j in range(dim):
if X_new[i,j] > ub[j]:
X_new[i, j] = ub[j]
if X_new[i,j] < lb[j]:
X_new[i, j] = lb[j]
#如果更优才更新
if(fun(X_new[i,:])<fitness[i]):
X[i,:] = copy.copy(X_new[i,:])
fitness[i] = copy.copy(fun(X_new[i,:]))
X = BorderCheck(X, ub, lb, pop, dim) # 边界检测
fitness = CaculateFitness(X, fun) # 计算适应度值
indexBest = np.argmin(fitness)
if fitness[indexBest] <= GbestScore: # 更新全局最优
GbestScore = copy.copy(fitness[indexBest])
GbestPositon[0,:] = copy.copy(X[indexBest, :])
Curve[t] = GbestScore
return GbestScore, GbestPositon, Curve
其实优化算法差不多都是这个流程,边界函数,适应度函数排序,然后寻优过程等等。
两个算法都放入字典,后面批量化测试。
OPT_algorithms = {'BOA':BOA,'CFSBOA':CFSBOA}
OPT_algorithms.keys()
简单使用
我们选择F13来测试,先看看F13函数三维的情况:
'''F13绘图函数'''
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
def F13Plot():
fig = plt.figure(1) #定义figure
ax = Axes3D(fig) #将figure变为3d
x1=np.arange(-50,50,1) #定义x1,范围为[-50,50],间隔为1
x2=np.arange(-50,50,1) #定义x2,范围为[-50,50],间隔为1
X1,X2=np.meshgrid(x1,x2) #生成网格
nSize = x1.shape[0]
Z=np.zeros([nSize,nSize])
for i in range(nSize):
for j in range(nSize):
X=[X1[i,j],X2[i,j]] #构造F13输入
X=np.array(X) #将格式由list转换为array
Z[i,j]=F13(X) #计算F13的值
#绘制3D曲面
# rstride:行之间的跨度 cstride:列之间的跨度
# rstride:行之间的跨度 cstride:列之间的跨度
# cmap参数可以控制三维曲面的颜色组合
ax.plot_surface(X1, X2, Z, rstride = 1, cstride = 1, cmap = plt.get_cmap('rainbow'))
ax.contour(X1, X2, Z, zdir='z', offset=0)#绘制等高线
ax.set_xlabel('X1')#x轴说明
ax.set_ylabel('X2')#y轴说明
ax.set_zlabel('Z')#z轴说明
ax.set_title('F13_space')
plt.show()
F13Plot()
然后我们使用优化算法来寻优,自定义好所有的参数:
#设置参数
pop = 30 #种群数量
MaxIter = 200#最大迭代次数
dim = 30 #维度
lb = -100*np.ones([dim, 1]) #下边界
ub = 100*np.ones([dim, 1])#上边界
#选择适应度函数
fobj = F13
#原始算法
GbestScore,GbestPositon,Curve = CFSBOA(pop,dim,lb,ub,MaxIter,fobj)
#改进算法
print('------原始算法结果--------------')
print('最优适应度值:',GbestScore)
print('最优解:',GbestPositon)
其实f13测试函数的最小值是0。所以可以看到这个算法几乎达到了最优,效果看起来还行。
自己使用解决实际问题的时候只需要替换fobj这个目标函数的参数就可以了。
这个函数就如同上面所有的自定义的测试函数一样,你只需要定义输入的x,经过1系列实际问题的计算逻辑,返回的适应度值就可以。
绘制适应度曲线
#绘制适应度曲线
plt.figure(figsize=(6,2.7),dpi=128)
plt.semilogy(Curve,'b-',linewidth=2)
plt.xlabel('Iteration',fontsize='medium')
plt.ylabel("Fitness",fontsize='medium')
plt.grid()
plt.title('CFSBOA',fontsize='large')
plt.legend(['CFSBOA'], loc='upper right')
plt.show()
我这里是对数轴,但是也收敛了,100轮左右最小值。
其实看到这里差不多就可以去把这个优化算法的函数拿去使用了,演示结束了,但是由于我们这里还需要对它的性能做一些测试,我们会把它在所有的测试函数上都跑一遍,这个时间可能是有点久的。
所有函数都测试一下
准备存储评价结果的数据框
functions = list(Funobject.keys())
algorithms = list(OPT_algorithms.keys())
columns = ['Mean', 'Std', 'Best', 'Worth']
index = pd.MultiIndex.from_product([functions, algorithms], names=['function_name', 'Algorithm_name'])
df_eval = pd.DataFrame(index=index, columns=columns)
df_eval.head()
索引和列名称都建好了,现在就是一个个跑,把值放进去就行了。
准备存储迭代图的数据框
df_Curve=pd.DataFrame(columns=index)
df_Curve
自定义训练函数
#定义训练函数
def train_fun(fobj_name=None,opt_algo_name=None, pop=30,MaxIter=200,Iter=30,show_fit=False):
fundim=Fundim[fobj_name] ; fobj=Funobject[fobj_name]
dim=fundim[0]
lb = fundim[1]*np.ones([dim, 1]) ; ub = fundim[2]*np.ones([dim, 1])
opt_algo=OPT_algorithms[opt_algo_name]
GbestScore_one=np.zeros([Iter])
GbestPositon_one=np.zeros([Iter,dim])
Curve_one=np.zeros([Iter,MaxIter])
for i in range(Iter):
GbestScore_one[i],GbestPositon_one[i,:],Curve_oneT =opt_algo(pop,dim,lb,ub,MaxIter,fobj)
Curve_one[i,:]=Curve_oneT.T
oneal_Mean=np.mean(GbestScore_one) #计算平均适应度值
oneal_Std=np.std(GbestScore_one)#计算标准差
oneal_Best=np.min(GbestScore_one)#计算最优值
oneal_Worst=np.max(GbestScore_one)#计算最差值
oneal_MeanCurve=Curve_one.mean(axis=0) #求平均适应度曲线
#储存结果
df_eval.loc[(fobj_name, opt_algo_name), :] = [oneal_Mean,oneal_Std, oneal_Best,oneal_Worst]
df_Curve.loc[:,(fobj_name,opt_algo_name)]=oneal_MeanCurve
#df_Curve[df_Curve.columns[(fobj_name,opt_algo_name)]] = oneal_MeanCurve
if show_fit:
print(f'{fobj_name}函数的{opt_algo_name}算法的平均适应度值是{oneal_Mean},标准差{oneal_Std},最优值{oneal_Best},最差值{oneal_Worst}')
训练测试
#设置参数
pop = 30#种群数量
MaxIter = 100 #代次数
Iter = 30 #运行次数
计算,遍历所有的测试函数
#所有函数,所有算法全部一次性计算
for fobj_name in list(Funobject.keys()):
for opt_algo_name in OPT_algorithms.keys():
try:
train_fun(fobj_name=fobj_name,opt_algo_name=opt_algo_name, pop=pop,MaxIter=MaxIter,Iter=Iter)
print(f'{fobj_name}的{opt_algo_name}算法完成')
except Exception as e: # 使用 except 来捕获错误
print(f'{fobj_name}的{opt_algo_name}算法报错了:{e}') # 打印错误信息
查看计算出来的评价指标
df_eval
由于这里大部分的测试函数最优值都是零,我们可以看到。两个算法在寻优的最优值情况都是差异还是有点大的,其中CFSBOA在很多函数上弥补了BOA没能达到最小值的情况,BOA都是接近0,没能达到0,但是CFSBOA基本都是能寻到最优,CFSBOA会稍微好一点点。在寻找最优值的这个效果上,改进是很有效的。
画出迭代图
评价一个优化算法肯定不能只从最优的情况来看,还要看他训练轮数寻优收敛的时间轮数,来综合评价。
colors = ['darkorange', 'limegreen', 'lightpink', 'deeppink', 'red', 'cornflowerblue', 'grey']
markers = ['^', 'D', 'o', '*', 'X', 'p', 's']
def plot_log_line(df_plot, fobj_name, step=10, save=False):
plt.figure(figsize=(6, 3), dpi=128)
for column, color, marker in zip(df_plot.columns, colors, markers):
plt.semilogy(df_plot.index[::step], df_plot[column][::step].to_numpy(),
color=color, marker=marker, label=column, markersize=4, alpha=0.7)
plt.xlabel('Iterations')
plt.ylabel('f')
plt.legend(loc='best', fontsize=8)
if save:
plt.savefig(f'./图片/{fobj_name}不同迭代图.png', bbox_inches='tight')
plt.show()
# 使用示例
# plot_log_line(your_dataframe, 'example_plot')
for fobj_name in df_Curve.columns.get_level_values(0).unique():
df1=df_Curve[fobj_name]
print(f'{fobj_name}的不同算法效果对比:')
plot_log_line(df1,fobj_name,5,False) #保存图片-True
注意这里是y轴是对数轴,看起来没那么陡峭。这里可以打印它在每一个测试函数上的迭代图,可以自己具体仔细观察。
这里是把两个算法的迭代曲线图都进行了对比,所有函数都有,这里就不展示太多了,我们从截图的两个图来看。可以发现CFSBOA的收敛速度稍微会快很多,我观察了所有的函数,大多数时候来说CFSBOA收敛的一般都是更快的,想通轮数可以找到更小的值,也就是说这个改进是有效的。
本来BOA的效果是一般的,但是进过这个改进,可以进入到优化算法的第一梯队了。效果是不错的。
后面还有更多的优化算法,等我有空都写完。其实文章最核心的还是优化算法的函数那一块儿,别的代码都是用来测试它的性能的
当然需要本次案例的全部代码文件的还是可以参考:混沌反馈共享和群体协同效应的蝴蝶优化算法,这个算法的文章论文PDF也在。
创作不易,看官觉得写得还不错的话点个关注和赞吧,本人会持续更新python数据分析领域的代码文章~(需要定制类似的代码可私信)