目录
简介
代码
引用
网址推荐
0代码在线构建地图应用
机器学习
ASO L4 Lidar Snow Depth 50m UTM Grid V001
简介
该数据集包含根据机载光探测和测距仪(或称激光雷达)对地表高程的测量得出的 50 米网格雪深。 这些数据是 NASA/JPL 机载雪地观测站 (ASO) 飞机勘测活动的一部分。
该数据集是由Airbomne Snow测量的50 m分辨率雪深度地图的集合 天文台(ASO),由联合成像光谱仪和扫描激光雷达系统创建 NASA/JPL。成像光谱仪用于量化光谱锯齿波、宽带锯齿波和 雪中灰尘和黑碳的辐射强迫。扫描激光雷达使用测量雪深度 从雪中减去无雪网格海拔数据的差异测高方法- 覆盖网格海拔数据(Deems等人,2013).本次50 m网格雪深数据 数据集是根据原始3 m雪深测量结果汇总的,这些测量结果在 ASO L4激光雷达雪深3 m UTM网格数据集。
参数:降雪深度 平台:DHC-6、King Air 传感器:Riegl LMS-Q1560 数据格式:GeoTIFF、PNG 时间覆盖范围:2013 年 4 月 3 日至 2019 年 7 月 16 日 时间分辨率:
空间分辨率: 50 m 50 m 空间参考系: WGS 84 / UTM zone 10NEPSG:32610 WGS 84 / UTM zone 11NEPSG:32611 WGS 84 / UTM zone 12NEPSG:32612 WGS 84 / UTM zone 13NEPSG:32613
代码
!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify
import pandas as pd
import leafmap
url = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
df
leafmap.nasa_data_login()
results, gdf = leafmap.nasa_data_search(
short_name="ASO_50M_SD",
cloud_hosted=True,
bounding_box=(-124.1847181, 47.4930029, -123.1287659, 48.09085803),
temporal=("2013-04-03", "2019-07-16"),
count=-1, # use -1 to return all datasets
return_gdf=True,
)
gdf.explore()
#leafmap.nasa_data_download(results[:5], out_dir="data")
引用
Painter, T. (2018). ASO L4 Lidar Snow Depth 50m UTM Grid, Version 1 [Data Set]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/STOT5I0U1WVI. Date Accessed 08-24-2024.
网址推荐
0代码在线构建地图应用
https://www.mapmost.com/#/?source_inviter=CnVrwIQs
机器学习
https://www.cbedai.net/xg