Python相关系数导图

news2024/11/15 12:56:11

🎯要点

  1. 量化变量和特征关联
  2. 绘图对比皮尔逊相关系数、斯皮尔曼氏秩和肯德尔秩
  3. 汽车性价比相关性矩阵热图
  4. 大流行病与资产波动
  5. 城镇化模型预测交通量
  6. 宝可梦类别特征非线性依赖性捕捉
  7. 向量加权皮尔逊相关系数
  8. 量化图像相似性
    在这里插入图片描述

Python皮尔逊-斯皮尔曼-肯德尔

皮尔逊相关系数

在统计学中,皮尔逊相关系数 是一种用于测量两组数据之间线性相关性的相关系数。它是两个变量的协方差与其标准差乘积的比率;因此,它本质上是协方差的标准化测量,其结果始终介于 -1 和 1 之间。与协方差本身一样,该测量只能反映变量的线性相关性,而忽略了许多其他类型的关系或相关性。举一个简单的例子,人们会期望来自小学的一组儿童的年龄和身高的皮尔逊相关系数明显大于 0,但小于 1(因为 1 表示不切实际的完美相关性)。

皮尔逊相关系数是两个变量的协方差除以其标准差的乘积。定义的形式涉及“乘积矩”,即均值调整后的随机变量乘积的均值(关于原点的一阶矩),因此名称中带有修饰词“乘积矩”。

皮尔逊相关系数应用于样本时,通常用 r x y r_{x y} rxy 表示,可称为样本相关系数或样本皮尔逊相关系数。通过将基于样本的协方差和方差的估计值代入上述公式,我们可以得到 r x y r_{x y} rxy 的公式。给定由 n n n 对组成的配对数据 { ( x 1 , y 1 ) , … , ( x n , y n ) } \left\{\left(x_1, y_1\right), \ldots,\left(x_n, y_n\right)\right\} {(x1,y1),,(xn,yn)},定义 r x y r_{x y} rxy
r x y = ∑ i = 1 n ( x i − x ˉ ) ( y i − y ˉ ) ∑ i = 1 n ( x i − x ˉ ) 2 ∑ i = 1 n ( y i − y ˉ ) 2 r_{x y}=\frac{\sum_{i=1}^n\left(x_i-\bar{x}\right)\left(y_i-\bar{y}\right)}{\sqrt{\sum_{i=1}^n\left(x_i-\bar{x}\right)^2} \sqrt{\sum_{i=1}^n\left(y_i-\bar{y}\right)^2}} rxy=i=1n(xixˉ)2 i=1n(yiyˉ)2 i=1n(xixˉ)(yiyˉ)
要计算 Pearson’s R 相关系数,使用 scipy.stats 库中的 pearsonr 函数。

import numpy as np
from scipy.stats import pearsonr

x = np.array([1, 2, 3, 4, 5])
y = np.array([2, 3, 4, 5, 6])
 
correlation_coefficient, _ = pearsonr(x, y)
print("Pearson's Correlation Coefficient:", correlation_coefficient)

这里的输出显示了完美的正相关性,其中当一个变量增加 1 时,另一个变量也增加相同的量。

Pearson's Correlation Coefficient: 1.0

绘图

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import pearsonr
import seaborn as sns
 
np.random.seed(0)
x_neg = np.linspace(0, 10, 50)
y_neg = -2 * x_neg + 10 + np.random.normal(0, 2, 50)
 
x_pos = np.linspace(0, 10, 50)
y_pos = 2 * x_pos + np.random.normal(0, 2, 50)
 
x_no_corr = np.linspace(0, 10, 50)
y_no_corr = np.random.normal(0, 2, 50)
 
corr_coeff_neg, _ = pearsonr(x_neg, y_neg)
corr_coeff_pos, _ = pearsonr(x_pos, y_pos)
corr_coeff_no_corr, _ = pearsonr(x_no_corr, y_no_corr)
 
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
 
sns.regplot(x=x_neg, y=y_neg, ax=axes[0], color='red', scatter_kws={'s': 15}, line_kws={'color': 'blue'}, ci=95)
axes[0].set_xlabel('X')
axes[0].set_ylabel('Y')
axes[0].set_title(f"Negative Correlation (r = {corr_coeff_neg:.2f})")
 
sns.regplot(x=x_pos, y=y_pos, ax=axes[1], color='green', scatter_kws={'s': 15}, line_kws={'color': 'blue'}, ci=95)
axes[1].set_xlabel('X')
axes[1].set_ylabel('Y')
axes[1].set_title(f"Positive Correlation (r = {corr_coeff_pos:.2f})")

sns.regplot(x=x_no_corr, y=y_no_corr, ax=axes[2], color='blue', scatter_kws={'s': 15}, line_kws={'color': 'blue'}, ci=95)
axes[2].set_xlabel('X')
axes[2].set_ylabel('Y')
axes[2].set_title(f"No Correlation (r = {corr_coeff_no_corr:.2f})")
 
plt.tight_layout()
plt.show()

斯皮尔曼秩相关系数

在统计学中,斯皮尔曼等级相关系数或斯皮尔曼 ρ \rho ρ,通常用希腊字母 ρ \rho ρ (rho) 或 r s r_s rs 表示,是一个排名相关性的非参数度量(两个变量秩之间的统计依赖性)。它评估使用单调函数描述两个变量之间的关系的程度。

斯皮尔曼相关系数定义为秩变量之间的皮尔逊相关系数。对于大小为 n n n 的样本, n n n 对原始分数 ( X i , Y i ) \left(X_i, Y_i\right) (Xi,Yi) 转换为秩 $R \left[X_i\right], R \left[Y_i\right] $ ,于是 r s r_s rs 计算为
r s = ρ [ R [ X ] , R [ Y ] ] = cov ⁡ [ R [ X ] , R [ Y ] ] σ R [ X ] σ R [ Y ] r_s=\rho[ R [X], R [Y]]=\frac{\operatorname{cov}[ R [X], R [Y]]}{\sigma_{ R [X]} \sigma_{ R [Y]}} rs=ρ[R[X],R[Y]]=σR[X]σR[Y]cov[R[X],R[Y]]

要计算斯皮尔曼的秩相关性,使用 scipy.stats 库中的 Spearmanr 函数。

from scipy.stats import spearmanr

x = [10, 20, 30, 40, 50]
y = [5, 15, 25, 35, 45]
 
rho, p_value = spearmanr(x, y)

print(f"Spearman's Rank Correlation Coefficient: {rho}")
print(f"P-value: {p_value}")

解释 ρ \rho ρ 结果:

  • ρ \rho ρ:当一个变量增加时,另一个变量也会增加,
  • ρ \rho ρ:当一个变量增加时,另一个变量往往会减少。
  • ρ \rho ρ=0:没有单调关系。

肯德尔秩相关系数

在统计学中,肯德尔秩相关系数通常称为肯德尔 τ 系数(以希腊字母 τ 命名,即 tau),是一种用于测量两个测量量之间的序数关联的统计数据。τ 检验是一种基于 τ 系数的统计依赖性非参数假设检验。它是秩相关的度量:按每个量对数据进行排序时,数据排序的相似性。

要计算肯德尔秩相关系数,使用 scipy.stats 库中的 kendalltau 函数。

import numpy as np
from scipy.stats import kendalltau

x = np.array([1, 2, 3, 4, 5])
y = np.array([2, 3, 1, 5, 4])
 
tau, p_value = kendalltau(x, y)
 
print(f"Kendall's Tau (τ): {tau:.2f}")
print(f"P-value: {p_value:.4f}")

👉更新:亚图跨际

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2074577.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

QcomboBox 组件

在记事本项目中,有一个问题,字体的编码格式是写死的。我们要建一个 组件提供这样的功能:通过点击,获得 不同的格式编码 定义它的槽 首先 把ui里面的comboBox组件与槽关联起来 connect(ui->comboBox,SIGNAL(currentIndexChange…

cesium加载矢量切片数据(mvt)全网方案总结

引言:Cesium是一款开源的3D地球可视化引擎,支持全球范围的数据展示,包括高分辨率地形、卫星图像和建筑模型等,允许用户创建交互式的3D地图,并提供了一系列的工具和API来处理地理空间数据。 Cesium支持加载多数据源的栅格切片数据,例如ArcGIS、BingMaps、WMTS、WMS等等。栅…

Qt 线程与窗体之间的传值

QThread 和窗口之间的通信通常通过信号和槽机制来实现 也可以直接通过调用线程中的值 效果图(Dialog To hello; TextLabel To hello) 在主窗口类中创建线程实例&#xff0c;并连接线程发出的信号到主窗口的槽函数。 .h #ifndef TESTAPP_H #define TESTAPP_H#include <QD…

Threejs学习-Stats 性能监控器、抗锯齿

stats性能监控器 import Stats from three/addons/libs/stats.module.js //引入包//添加性能监视器&#xff0c;查看帧率 const stats new Stats(); document.body.appendChild(stats.domElement); // //渲染 function animate() {requestAnimationFrame(animate);stats.upda…

GraphRAG论文解读

欢迎一起讨论 论文地址综述介绍部分核心翻译翻译解释重要的信息元素和实体的关系&#xff08;包含和被包含&#xff0c;而非相等&#xff09;Graph Index&#xff08;图索引&#xff09;Community Detection&#xff08;社区检测&#xff09;Query-Focused Summarization&#…

Qt+FFmpeg开发视频播放器笔记(二):界面UI搭建

效果图 主要使用无边框窗体搭建,实现窗体的拖动和缩放&#xff0c;播放列表、文件打开等。 主要代码 manwindow设计类 #ifndef MAINWINDOW_H #define MAINWINDOW_H#include <QMainWindow> #include <QMutex> #include "framelesshelper.h"QT_BEGIN_NA…

力扣最热一百题——6.三数之和

目录 题目链接&#xff1a;15. 三数之和 - 力扣&#xff08;LeetCode&#xff09; 题目描述 示例 提示 解法一&#xff1a;双指针 代码分析 总结 没啥多说的&#xff0c;就是最近CS根本上不了分谢谢。 题目链接&#xff1a;15. 三数之和 - 力扣&#xff08;LeetCode&…

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis 精读

1 传统视图合成和NeRF&#xff08;Neural Radiance Fields&#xff09; 1.1 联系 传统视图合成和NeRF的共同目标都是从已有的视角图像中生成新的视角图像。两者都利用已有的多视角图像数据来预测或合成从未见过的视角。 1.2 区别 1.2.1 几何表示方式 传统视图合成&#xff…

frameworks 之InputReader

frameworks 之InputReader InputManagerService 初始化InputManagerService 启动InputReader 事件的读取设备节点注册和监听设备输入事件的读取 InputReader 事件的处理设备的添加和删除处理触摸事件的处理数据的加工和分发 android 输入事件 主要分 2个流程 事件读取 和 事件…

先进提示词工程

大型语言模型 (LLM) 的普及彻底改变了我们人类解决问题的方式。在过去&#xff0c;用计算机解决任何任务&#xff08;例如&#xff0c;重新格式化文档或对句子进行分类&#xff09;都需要创建一个程序&#xff08;即根据某种编程语言精确编写的一组命令&#xff09;。使用 LLM&…

ssrf实现.SSH未创建写shell

一、介绍SSRF漏洞 SSRF (Server-Side Request Forgery,服务器端请求伪造)是一种由攻击者构造请求&#xff0c;由服务端发起请求的安全漏洞。一般情况下&#xff0c;SSRF攻击的目标是外网无法访问的内部系统(正因为请求是由服务端发起的&#xff0c;所以服务端能请求到与自身相…

Openvino2024.3版部署YOLO (C++)

在网上很少看到有2024版的openvino&#xff0c;老版本的接口很多也都不在了&#xff0c;此篇写出来也算是为了防止自己忘记。 openvino下载 下载英特尔发行版 OpenVINO 工具套件 (intel.com) 下载好后解压出来&#xff0c;放C盘D盘都一样&#xff0c;我放在D盘了&#xff0c;…

如何解决 Cloudflare | 使用 Puppeteer 和 Node.JS

我认为&#xff0c;现在自动化任务越多&#xff0c;越能体现它们的价值&#xff0c;因此挑战也变得更加明显和困难。例如&#xff0c;Cloudflare 目前提供了强有力的安全措施来保护网站免受所有形式的自动化工具的侵扰。 但对于从事自动化项目&#xff08;如网络爬虫、数据提取…

STM32(七):定时器——输入捕获

IC&#xff08;Input Capture&#xff09;输入捕获 输入捕获模式下&#xff0c;当通道输入引脚出现指定电平跳变时&#xff0c;当前CNT的值将被锁存到CCR中&#xff0c;可用于测量PWM波形的频率、占空比、脉冲间隔、电平持续时间等参数。 每个高级定时器和通用定时器都拥有4个输…

基于vscode安装EPS-IDF环境与创建例程

安装ESP-IDF 在vscode中安装esp-idf插件 然后打开插件&#xff0c;左侧选择Configure ESP-IDF Extension ![![[Pasted image 20240821221256.png]](https://i-blog.csdnimg.cn/direct/3993e22c37644097b464aef0bbc244a5.png) 点击安装 自动下载ESP-IDF 安装完成&#xff01…

计算机毕业设计推荐- 基于Python的高校岗位招聘数据分析平台

&#x1f496;&#x1f525;作者主页&#xff1a;毕设木哥 精彩专栏推荐订阅&#xff1a;在 下方专栏&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb; 实战项目 文章目录 实战项目 一、基于Python的高校岗位招聘分…

Gitee的使用方法

是跟着这位up的视频学习的&#xff0c;老师讲的很好 https://www.bilibili.com/video/BV1hf4y1W7yT/share_sourcecopy_web&vd_source985ed259d2e2be1d81c218c58be165b9 需要的安装包我学习完成后&#xff0c;会放到我的gitee仓库里&#xff0c;也当作是练习一下。 insta…

PriorMapNet:Enhancing Online Vectorized HD Map Construction with Priors

参考代码&#xff1a;None 动机与出发点 训练场景中的车道线千变万化会导致query方式预测方式变得较难收敛或者性能较低&#xff0c;之前的一些工作有将mask信息引入到pipeline中为query提供instance-level的语义信息&#xff0c;但是对于point-level信息就需要自己去学习了。…

动态规划:从记忆化搜索到递推 打家劫舍

目录 LeetCode198 打家劫舍 1、递归搜索保存计算结果记忆化搜索 2、1:1翻译成递推 3、空间优化 LeetCode213 打家劫舍II LeetCode198 打家劫舍 1、递归搜索保存计算结果记忆化搜索 回溯三问&#xff1a; &#xff08;1&#xff09;当前操作&#xff1f;枚举第i个房子选/不…

计算机的错误计算(七十三)

摘要 计算机的错误计算&#xff08;七十二&#xff09;探讨了大数的余割函数的错误计算 。本节讨论另外一类数值&#xff1a; 附近数 的余割函数的计算精度问题。 例1. 已知 计算 csc(x) . 若在 Excel 中计算&#xff0c;则有 若用Java 编程实现 , 即有下列代码&#x…