【MySQL】一文带你理清<行级锁>(行锁,间隙锁,临键锁)

news2024/9/25 13:21:53

前言

大家好吖,欢迎来到 YY 滴MySQL系列 ,热烈欢迎! 本章主要内容面向接触过C++ Linux的老铁
主要内容含:
在这里插入图片描述

欢迎订阅 YY滴C++专栏!更多干货持续更新!以下是传送门!

  • YY的《C++》专栏
  • YY的《C++11》专栏
  • YY的《Linux》专栏
  • YY的《数据结构》专栏
  • YY的《C语言基础》专栏
  • YY的《初学者易错点》专栏
  • YY的《小小知识点》专栏
  • YY的《单片机期末速过》专栏
  • YY的《C++期末速过》专栏
  • YY的《单片机》专栏
  • YY的《STM32》专栏
  • YY的《数据库》专栏
  • YY的《数据库原理》专栏

目录

  • 【1】【行锁】(共享锁,排他锁)
    • 1.共享锁,排他锁机制介绍
    • 2.不同SQL下,行锁的情况
    • 3.演示行锁
      • 【1】情况1
      • 【2】情况2
  • 【2】【临键锁S】【间隙锁】演示
    • ※【临键锁S】【间隙锁】特性演示目录
    • 1.演示:索引上的等值查询 (唯一索引,例如主键索引)
    • 2.演示:索引上的范围查询(唯一索引)
    • 3.演示:索引上的等值查询(普通索引)——临键锁退化为间隙锁

【1】【行锁】(共享锁,排他锁)

1.共享锁,排他锁机制介绍

InnoDB实现了以下两种类型的行锁:

  1. 共享锁(S): 允许一个事务去读一行,阻止其他事务获得相同数据集的排它锁。 (共享锁之间是兼容的 ,共享锁与排他锁互斥)
  2. 排他锁(X): 允许获取排他锁的事务更新数据,阻止其他事务获得相同数据集的共享锁和排他锁。 (一个数据有了排他锁,就与其他共享锁和排他锁互斥)

在这里插入图片描述

2.不同SQL下,行锁的情况

  • 分成两种,一种是增删改;另一种是查询
    在这里插入图片描述

3.演示行锁

默认情况下,InnODB在 REPEATABLE READ事务隔离级别运行,InnoDB使用 临键锁 进行搜索和索引扫描,以防止幻读。(本次演示)

  1. 针对 唯一索引 进行检索时,对已存在的记录进行等值匹配时,将会 自动优化为行锁

  2. 不通过索引条件检索数据(InnoDB的行锁是针对于索引加的锁),那么InnoDB将对表中的所有记录加锁,此时 就会升级为表锁

可以通过以下SOL,查看意向锁及行锁的加锁情况:

select object schema,object name,index name,lock type,lock mode,lock data from performance schema.data locks;

【1】情况1

演示:

  • 我们查看一张表,发现表的id是 主键索引

在这里插入图片描述

  • 我们加入共享锁

在这里插入图片描述

  • 我们查看行锁的加锁情况: 注:TABLE 为表锁 RECORD为行锁
  • 查看查看意向锁及行锁的加锁情况:
select object schema,object name,index name,lock type,lock mode,lock data from performance schema.data locks;
  • 发现有共享锁S,且无间隙锁 REC_NOT_GAP

在这里插入图片描述

  • 我们在另一客户端再加上共享锁,依旧能执行;因为 (共享锁之间是兼容的 ,共享锁与排他锁互斥)

在这里插入图片描述

【2】情况2

不通过索引条件检索数据(InnoDB的行锁是针对于索引加的锁),那么InnoDB将对表中的所有记录加锁,此时 就会升级为表锁
演示:

  • 有这么一张表,为主键索引
    在这里插入图片描述
  • 我们针对非索引条件检索数据name,进行更新操作
  • 此时行锁就会升级成表锁
    在这里插入图片描述
  • 此时我们再开一个终端,对id=3的数据行进行修改,发现进入阻塞状态
    在这里插入图片描述

【2】【临键锁S】【间隙锁】演示

※【临键锁S】【间隙锁】特性演示目录

下面进行演示:

默认情况下,InnODB在 REPEATABLE READ事务隔离级别运行,InnoDB使用 next-key锁进行搜索和索引扫描,以防止幻读。

  1. 索引上的等值查询 (唯一索引,例如主键索引) ,给 不存在的记录 加锁时,优化为间隙锁。
  2. 索引上的范围查询(唯一索引)–会访问到不满足条件的第一个值为止。
  3. 索引上的等值查询(普通索引),向右遍历时最后一个值不满足查询需求时,next-key lock 退化为间隙锁。

1.演示:索引上的等值查询 (唯一索引,例如主键索引)

  • 索引上的等值查询 (唯一索引,例如主键索引) ,给 不存在的记录 加锁时,优化为间隙锁。

  • 表中id为主键索引,我们给不存在的id=5加锁,此时就会在3和8之间加入一个 间隙锁
    在这里插入图片描述

  • 查询发现上了间隙锁

  • 查看查看意向锁及行锁的加锁情况:

select object schema,object name,index name,lock type,lock mode,lock data from performance schema.data locks;

在这里插入图片描述

  • 此时我们往(3-8)的间隙里加入数据(id=7),发现进入阻塞状态
    在这里插入图片描述

2.演示:索引上的范围查询(唯一索引)

  • 索引上的范围查询(唯一索引)–会访问到不满足条件的第一个值为止。
  • 我们针对既是主键也是唯一索引id,进行范围查询
    -
  • 查看锁情况
  • 查看查看意向锁及行锁的加锁情况:
select object schema,object name,index name,lock type,lock mode,lock data from performance schema.data locks;
  • 对19加了一个行锁S,REC_NOT_GAP
  • 对25与25之前间隙加了一个临键锁,S
  • 对25之后到正无穷supremum pseu加了临键锁,S
    在这里插入图片描述

3.演示:索引上的等值查询(普通索引)——临键锁退化为间隙锁

  • 索引上的等值查询(普通索引),向右遍历时最后一个值不满足查询需求时, 临键锁 退化为间隙锁 (可理解成多出一个间隙锁)
  • 前置知识: 我们加的行锁是针对索引加的锁,索引是一个B+树的结构,B+树的节点形成的是一个有序的双向链表
  • 现有的记录中有18,因为其不是唯一索引,18之前与之后将来都可能插入字段值为18的记录
    在这里插入图片描述
  • 于是乎16和18之间,18和29之间都会上锁;18和29之间是间隙锁,而16和18之间的临键锁,此时会退化为间隙锁;

我们可以看看下面这个例子:

  • 我们先对age加上普通索引
    在这里插入图片描述
  • 对age=3的记录,加上共享锁
    在这里插入图片描述
  • 我们查询锁的情况 注:S是临键锁
  • 查看查看意向锁及行锁的加锁情况:
select object schema,object name,index name,lock type,lock mode,lock data from performance schema.data locks;

在这里插入图片描述

  • 3,3是 临键锁S ,对应的是锁住3和3之前的部分在这里插入图片描述

  • 7,7是 临键锁S和 间隙锁GAP ,对应的是所著3和7之间的间隙在这里插入图片描述

  • 向右遍历时最后一个值不满足查询需求时, 临键锁 退化为间隙锁 (可理解成多出一个间隙锁)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2073738.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

STM32(六):定时器——输出比较实验

PWM驱动呼吸灯 源码: #include "stm32f10x.h" // Device headervoid PWM_Init(void) {RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);//开启时钟TIM_InternalClockConfig(TIM2);//选择时基单元的时钟TIM_TimeBaseInitTypeDef TI…

怎么管控终端电脑上的移动端口

管控终端电脑上的移动端口,尤其是USB等移动端口,是确保企业数据安全和提升网络管理效率的重要手段。 一、使用注册表编辑器禁用USB端口(适用于Windows系统) 打开注册表编辑器: 同时按下“WinR”组合键,打…

【C++从小白到大牛】C++智能指针的使用、原理和分类

目录 1、我们为什么需要智能指针? 2、内存泄露 2.1 什么是内存泄漏,内存泄漏的危害 2.2如何避免内存泄漏 总结一下: 3.智能指针的使用及原理 3.1 RAII 3.2关于深拷贝和浅拷贝更深层次的理解: 3.3 std::auto_ptr 3.4 std::unique_pt…

《黑神话:悟空》登顶全球:游戏行业投资新风向与投资洞察

目录 引言 一、原创IP的崛起:文化共鸣与市场潜力 1《黑神话:悟空》的原创IP魅力 2 原创IP在游戏行业中的重要性 3 原创IP成为新的投资热点 4 文化共鸣的关键作用 二、高质量内容为王:技术与创新的双重驱动 1 《黑神话:悟空》的高质量内容展示 2…

Java接口interface(内含练习)

为什么有接口? 接口就是一种规则,更侧向是一种行为 接口的定义和使用 接口用关键字interface来定义 public interface 接口名{} 接口不能实例化 接口和接口之间是实现关系,通过implements关键字表示 public class 类名 implements 接口…

浅谈线性表——链表

文章目录 一、ArrayList的缺陷二、什么是链表?三、自我实现一个单向不带头非循环结构的链表3.1、实现代码3.2、代码解析 四、自我实现一个双向不带头非循环结构的链表4.1、实现代码 一、ArrayList的缺陷 前面学习了顺序表,顺序表在知道下标时可以快速的…

python应用之random模块(居然还有那么多的随机算法函数)

random 是 Python 的一个常用的内置模块,模块提供了生成随机数的功能,包含了多种生成随机数的函数,比如生成随机整数、随机浮点数、从序列中随机选择元素等。 使用 random模块 要使用 random模块,直接导入它即可。 import rand…

spring揭秘09-aop03-aop织入器织入横切逻辑与自动织入

文章目录 【README】【1】spring aop的织入【1.1】使用ProxyFactory 作为织入器【1.2】基于接口的代理(JDK动态代理,目标类实现接口)【补充】 【1.2】基于类的代理(CGLIB动态代理,目标类没有实现接口)【1.2…

Nginx: 配置项之autoIndex模块与Nginx变量

autoIndex模块 autoindex模块它所实现的一个基本功能,是当用户请求以 / 结尾式的URL,它会列出对应的目录结构比如说, 在实际的生态环境中,内部系统可能经常需要为用户提供一些下载功能。可能需要列出来某一个磁盘上的一个文件, 比…

【D-DCVRP】求解DCVRP改进贪婪算法(三)

一、Held-Harp模型 海尔德和卡尔普在1970年提出景点模型,用于求解TSP问题的最优解下界 该模型同样可以用于DCVRP问题,既有定理1成立。 定理1:根据Held-Karp模型使用向量 π = ( 0 , π 1 , π 2 , ⋯   , π n ) \pi=(0,\pi_1,\pi_2,\cdots,\pi_n) π=(0,π1​,π2​,⋯…

Datawhale第五期夏令营-CV竞赛

CV竞赛 0.赛事报名租用4090 1.开始运行下载文件提交结果 2.内容解释赛题背景赛题目标社会价值评分规则baseline精读代码什么是YOLO 主要代码内容精读使用Ultraalytics运行代码 0.赛事报名 赛事官网:https://www.marsbigdata.com/competition/details?id3839107548872 租用40…

【Redis】RDB和AOF持久化

RDB和AOF持久化 一、什么是持久化?二、RDB三、AOF 一、什么是持久化? 数据一般写在内存上,但是当重新启动计算机内存数据是会丢失的,而硬盘中的数据是不会丢失的,所以,当我们把数据从内存放到硬盘中的话就…

解决Windows下载完anaconda之后,在pycharm中使用anaconda

怎么下载anaconda我就不详细讲了,就是官方下载基本嫩都是下一步下一步你就可以 一、首先配置环境变量如图 二、查看anaconda情况 三、打开pycharm,如下图操作 ## 注意这里的.bat文件需要在你下载到的anaconda中去找 完毕

6款ai智能文章改写软件,轻松实现文章自动改写

在内容创作领域,改写文章是一项费时费力的工作。为了让创作者从繁琐的改写任务中解脱出来,本文将为你详细介绍六款ai智能文章改写软件,助你轻松实现文章自动改写,提升创作效率。 一、创作者的痛点:文章改写的挑战 作为…

【C++ Primer Plus习题】5.5

问题: 解答: #include <iostream> using namespace std;#define MONTHSCOUNT 12int main() {string months[MONTHSCOUNT] { "January","February","March","April","May","June","July","…

高斯混合模型原理及Python实践

高斯混合模型&#xff08;Gaussian Mixture Model&#xff0c;简称GMM&#xff09;是一种统计学中的概率模型&#xff0c;用于表示由多个高斯分布&#xff08;正态分布&#xff09;混合组成的数据集合。其核心原理基于假设数据集中的每个数据点都是由多个潜在的高斯分布之一生成…

SAP商业地产管理(RE-FX)

SAP 提供了多个模块来支持租赁业务流程和会计处理&#xff0c;这些模块包括但不限于&#xff1a; SAP Leasing&#xff1a;这是一个为租赁公司提供的行业解决方案&#xff0c;支持从租赁起源到中期变更和租赁结束选项的所有阶段的业务流程。SAP Leasing 集成了 SAP CRM 和 SAP …

Java 中的 BIO, NIO, AIO 原理以及示例代码

本文参考&#xff1a; https://blog.csdn.net/yhl_jxy/article/details/79335692 https://www.cnblogs.com/cuzzz/p/17290070.html https://www.cnblogs.com/cuzzz/p/17473398.html https://pdai.tech/md/java/io/java-io-nio-select-epoll.html 最近准备看 Kafka 源码&#xf…

2-76 基于matlab的加权平均融合算法

基于matlab的加权平均融合算法&#xff0c;进行灰度或彩色多模态医学图像融合&#xff0c;程序具体很好的通用性&#xff0c;提供图像融合客观评价指标&#xff0c;还给出3组珍贵的已配准的图像。程序已调通&#xff0c;可直接运行。 2-76 多模态医学图像融合 - 小红书 (xiaoho…

C语言 之 浮点数在内存中的存储 详细讲解

文章目录 浮点数浮点数的存储浮点数的存储浮点数的读取例题 浮点数 常见的浮点数&#xff1a;3.14159、1E10&#xff08;表示1*10^10&#xff09;等 浮点数家族包括&#xff1a; float、double、long double 类型。 浮点数表示的范围在float.h 中有定义 浮点数的存储 浮点数…