46. 携带研究材料
1.dp数组代表的是什么? 这里的dp数组是一个二维数组,dp[i][j]是从前i个物品中任选放入容量j内的最大价值。
2.递推公式。
-
不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。
-
放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值
递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
3.dp数组初始化:dp数组的第一列,也就是容量为0,此时都是0。dp数组的第一行,也就是把第0个物品放入,此时前面都是0(放不进去的时候),直到能放进去了变为value[i]。
4.遍历方向,外层是背包或者外层是物品都可以
5.打印dp数组,最右下角的元素
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int bagweight = scanner.nextInt();
int[] weight = new int[n];
int[] value = new int[n];
for (int i = 0; i < n; ++i) {
weight[i] = scanner.nextInt();
}
for (int j = 0; j < n; ++j) {
value[j] = scanner.nextInt();
}
int[][] dp = new int[n][bagweight + 1];
for (int j = weight[0]; j <= bagweight; j++) {
dp[0][j] = value[0];
}
for (int i = 1; i < n; i++) {
for (int j = 0; j <= bagweight; j++) {
if (j < weight[i]) {
dp[i][j] = dp[i - 1][j];
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}
}
System.out.println(dp[n - 1][bagweight]);
}
}