一. 环境介绍
高性能应用服务 HAI 拥有丰富的预装应用,可以将开源社区的前沿模型快速转化为您专有的部署实践,一键拉起,即开即用。现已支持在HAI购买页的社区应用中,找到Llama 3.1等应用的入口,简单选型后,即可一键启动推理服务。
Chatchat项目介绍
该项目利用langchain思想,实现了基于本地知识库的问答应用。支持市面上主流的开源 LLM、 Embedding 模型与向量数据库,可实现全部使用开源模型离线私有部署。与此同时,该项目也支持 OpenAI GPT API 的调用。
项目的实现原理如下图所示,过程包括加载文件 -> 读取文本 -> 文本分割 -> 文本向量化 -> 问句向量化 -> 在文本向量中匹配出与问句向量最相似的 top k个 -> 匹配出的文本作为上下文和问题一起添加到 prompt中 -> 提交给 LLM生成回答。
部署完成的效果展示
二. 使用说明
- 进入HAI购买页,选择“Langchain-Chatchat-llama3.1”社区应用并创建实例。实例创建完成后,点击算力连接方式,选择jupyterlab并进入terminal,将下方的代码复制粘贴到terminal中,按回车执行。当看到下图所示内容后,代表应用启动完成。
代码语言:javascript
export CHATCHAT_ROOT=/root/chatchat_data
chatchat init
chatchat kb -r
chatchat start -a
- 使用实例公网ip,代替URL中的0.0.0.0,粘贴到导航栏即可访问。可按需上传本地的文件进行问答交互。
附录:在HAI上用llama3.1的几种姿势
模型测试
可以基于HAI中基础的llama3.1环境,快速测试模型问答性能。
微调(Fine-tuning)
通过在特定任务或领域的数据上进一步训练llama3.1模型,使其更适合特定应用。例如,可以使用特定领域的文本数据来微调模型,使其在该领域的表现更好。
挂载RAG(Retrieval-Augmented Generation)
结合信息检索技术和生成技术,使模型在回答问题时可以检索到相关的信息并生成更准确的回答。这种方法通常用于需要实时或准确信息的任务。
集成外部知识库
将模型与外部知识库(如知识图谱)结合,使其能够利用结构化数据提供更准确和全面的回答。
更多
基于llama3.1开发agent,以api的形式在HAI中部署,并接入您的app,助力应用开发。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈