LVS中NAT模式和DR模式实战讲解

news2024/11/16 7:28:49

 1DR模式

DR:Direct Routing,直接路由,LVS默认模式,应用最广泛,通过为请求报文重新封装一个MAC首部进行 转发,源MAC是DIP所在的接口的MAC,目标MAC是某挑选出的RS的RIP所在接口的MAC地址;源 IP/PORT,以及目标IP/PORT均保持不变

mac地址的转换

搭建一个DR模式的集群

架构图:

网络解释:

net模式网段:172.25.250.0/24

仅主机网段:172.25.254.0/24

路由器有两个网卡:一个net一个仅主机

LVS,web1,web2:用一个仅主机网卡再用一个环回网卡

注意:这里VIP的地址用环回网卡(画图的时候lo标记错了)

注意:需要打开路由器的内核路由功能使得路由器本身的两个网卡可以相互通信。并且设置Web服务器的ARP广播的响应,使得客户端发送172.25.254.200请求时只有LVS响应,web不响应。

一:ip设置

注意:客户端的网关写路由器的172.25.250.0网段,lvs,web1,web2写路由器的172.25.254.0网段

客户端:

路由器:

LVS:

 Web1:

Web2:

二:路由器打开内核路由功能

 vim /etc/sysctl.conf

sysctl -p 重新加载配置文件

三:部署LVS 

软件下载:yum install ipvsadm -y

管理集群:

[root@lvs ~]# ipvsadm -A -t 172.25.254.200:80 -s rr


管理集群中RealServer:

[root@lvs ~]# ipvsadm -a -t 172.25.254.200:80 -r 172.25.254.10:80 -g
[root@lvs ~]# ipvsadm -a -t 172.25.254.200:80 -r 172.25.254.20:80 -g

四:配置服务器上的web服务

web1:

yum install httpd -y
echo web1 > /var/www/html/index.html

关arp

echo 1 > /proc/sys/net/ipv4/conf/all/arp_ignore

echo 2 > /proc/sys/net/ipv4/conf/all/arp_announce

echo 1 > /proc/sys/net/ipv4/conf/lo/arp_ignore

echo 2 > /proc/sys/net/ipv4/conf/lo/arp_announce

web2:

yum install httpd -y
echo web2 > /var/www/html/index.html
关ARP

echo 1 > /proc/sys/net/ipv4/conf/all/arp_ignore

echo 2 > /proc/sys/net/ipv4/conf/all/arp_announce

echo 1 > /proc/sys/net/ipv4/conf/lo/arp_ignore

echo 2 > /proc/sys/net/ipv4/conf/lo/arp_announce

五:测试

DR模式总结:

2.nat模式

1.客户端发送访问请求,请求数据包中含有请求来源(cip),访问目标地址(VIP)访问目标端口 (9000port)

2.VS服务器接收到访问请求做DNAT把请求数据包中的目的地由VIP换成RS的RIP和相应端口

3.RS1相应请求,发送响应数据包,包中的相应保温为数据来源(RIP1)响应目标(CIP)相应端口 (9000port)

4.VS服务器接收到响应数据包,改变包中的数据来源(RIP1-->VIP),响应目标端口(9000-->80)

5.VS服务器把修改过报文的响应数据包回传给客户端

6.lvs的NAT模式接收和返回客户端数据包时都要经过lvs的调度机,所以lvs的调度机容易阻塞

搭建一个负载均衡的集群

首先准备4个主机:客户,LVS,nod1.node2  

1.Director 服务器采用双网卡,一个是桥接网卡连接外网,一个是仅主机网卡与后端Web服务器相连

2.Web服务器采用仅主机网卡与director相连

3.Web服务器网关指向DIP

4.后端web服务器不需要连接外网

网络配置:ip仅供参考

clict用的nat模式:ip为172.25.250.200.0/24网段

LVS两张网卡:nat的网卡网段172.25.250.200.0/24网段,仅主机网卡网段172.25.254.0/24网段

web1和web2:都为172.25.254.0/24网段

添加LVS网卡,一个选择net模式一个选择仅主机模式

node1,node2选择仅主机

客户选择net模式

LVS上下载软件:

yum install ipvsadm

修改内核参数:

net.ipv4.ip_forward = 1

sysctl -p重新加载

目的:使得LVS主机上两个网卡可以互通

设置转换规则:

[root@LVS ~]# ipvsadm -A -t 172.25.250.200:80 -s rr

[root@LVS ~]# ipvsadm -a -t 172.25.250.200:80 -r 172.25.254.10:80 -m

[root@LVS ~]# ipvsadm -a -t 172.25.250.200:80 -r 172.25.254.20:80 -m

[root@LVS ~]# ipvsadm -Ln #查看配置规则

配置服务端两个主机的web服务:

[root@node1 ~]# yum install httpd

[root@node1 ~]# echo web1 > /var/www/html/index.html

[root@node1 ~]# systemctl enable --now httpd

[root@node2 ~]# yum install httpd

[root@node2 ~]# echo web2 > /var/www/html/index.html

[root@node2 ~]# systemctl enable --now httpd

效果:

 NAT模式总结

缺点:lvs调度器的NAT模式接收和返回客户端数据包时都要经过lvs的调度机,所以lvs的调度机容易阻塞  

3.LVS算法

3.1.lvs调度算法类型

ipvs scheduler:根据其调度时是否考虑各RS当前的负载状态被分为两种:

静态方法和动态方法:

静态方法:仅根据算法本身进行调度,不考虑RS的负载情况

动态方法:主要根据每RS当前的负载状态及调度算法进行调度Overhead=value较小的RS将被调度

3.2.lvs静态调度算法

1、RR:roundrobin 轮询 RS分别被调度,当RS配置有差别时不推荐

2、WRR:Weighted RR,加权轮询根据RS的配置进行加权调度,性能差的RS被调度的次数少

3、SH:Source Hashing,实现session sticky,源IP地址hash;将来自于同一个IP地址的请求始终发往 第一次挑中的RS,从而实现会话绑定

4、DH:Destination Hashing;目标地址哈希,第一次轮询调度至RS,后续将发往同一个目标地址的请 求始终转发至第一次挑中的RS,典型使用场景是正向代理缓存场景中的负载均衡,如:宽带运营商

3.3.lvs动态调度算法

1、LC:least connections(最少链接发) 适用于长连接应用Overhead(负载值)=activeconns(活动链接数) x 256+inactiveconns(非活 动链接数)

2、WLC:Weighted LC(权重最少链接) 默认调度方法Overhead=(activeconns x 256+inactiveconns)/weight

3、SED:Shortest Expection Delay, 初始连接高权重优先Overhead=(activeconns+1+inactiveconns) x 256/weight 但是,当node1的权重为1,node2的权重为10,经过运算前几次的调度都会被node2承接

4、NQ:Never Queue,第一轮均匀分配,后续SED

5、LBLC:Locality-Based LC,动态的DH算法,使用场景:根据负载状态实现正向代理

6、LBLCR:LBLC with Replication,带复制功能的LBLC,解决LBLC负载不均衡问题,从负载重的复制 到负载轻的RS

3.4在4.15版本内核以后新增调度算法

1.FO(Weighted Fai Over)调度算法:

常用作灰度发布 在此FO算法中,遍历虚拟服务所关联的真实服务器链表,找到还未过载(未设置IP_VS_DEST_F OVERLOAD标志)的且权重最高的真实服务器,进行调度 当服务器承接大量链接,我们可以对此服务器进行过载标记(IP_VS_DEST_F OVERLOAD),那么vs调度 器就不会把链接调度到有过载标记的主机中。

2.OVF(Overflow-connection)调度算法:

基于真实服务器的活动连接数量和权重值实现。将新连接调度到权重值最高的真实服务器,直到其活动 连接数量超过权重值,之后调度到下一个权重值最高的真实服务器,在此OVF算法中,遍历虚拟服务相关 联的真实服务器链表,找到权重值最高的可用真实服务器。一个可用的真实服务器需要同时满足以下条 件: 未过载(未设置IP_VS_DEST_F OVERLOAD标志) 真实服务器当前的活动连接数量小于其权重值 其权重值不为零

4.防火墙标签解决轮询错误

以http和https为例,当我们在RS中同时开放80和443端口,那么默认控制是分开轮询的,这样我们就出 现了一个轮询错乱的问题

当我第一次访问80被轮询到RS1后下次访问443仍然可能会被轮询到RS1上

防火墙标记解决轮询调度问题

FWM:FireWall Mark

MARK target 可用于给特定的报文打标记,

--set-mark value

其中:value 可为0xffff格式,表示十六进制数字借助于防火墙标记来分类报文,而后基于标记定义集群服 务:可将多个不同的应用使用同一个集群服务进行调度

实现方法:

在Director主机打标记

iptables -t mangle -A PREROUTING -d 192.168.0.100 -p tcp -m multiport --dports 80,443 -j MARK --set-mark 6666

ipvsadm -A -f 6666 -s rr

ipvsadm -a -f 6666 -r 192.168.0.101 -g

ipvsadm -a -f 6666 -r 192.168.0.102 -g

这样设置过后,防火墙就可以把两个端口的不同集群捆绑到一起,这样就解决了轮询错误问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1989950.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++:auto关键字、内联函数、引用、带默认形参值的函数、函数重载

一、auto关键字 在C中,auto关键字是一个类型说明符,用于自动类型推导。 使用 auto 关键字时,变量的类型 是在编译时由编译器 根据 初始化表达式 自动推导出来的。这意味着你 不能在 声明 auto 变量时 不进行初始化 声明 auto 变量时&#x…

“八股文”:是助力还是阻力?

在程序员面试中,“八股文”是一个绕不开的话题。所谓“八股文”,指的是那些在面试中经常出现的标准问题及其答案,例如“解释一下死锁的概念”、“CAP理论是什么”等。这些内容通常被求职者反复练习,以至于变成了某种固定的模式或套…

分享6类10种政务AI大模型应用场景

大模型是指具有大规模参数和复杂计算结构的机器学习模型。这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。大模型的设计目的是提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。大模型在各种领域都有广泛的应用&#xff0…

adword — Recho | pwn题目记录

涉及到以前没接触过的点,记录下。 checksec: IDA: 很明显的一个栈溢出,但是一直有一个while循环,就算劫持控制流后也出不了这个循环。这里学到了一个新方法: pwntools的shutdown(send) def shutdown(…

C++现代教程四

float转string不带多余0 float a 1.2; std::tostring(a); // 1.200000 std::ostringstream strStream; strStream << a; // 1.2 if (!strStream.view().empty()) // 判定流有数据// 边框融合 float measureText(std::u8string text, FontTypes::Rectangle &recta…

Marin说PCB之1000-BASE-T1上的共模电感的选型知多少---02

今天刚刚好是立秋的第一天&#xff0c;天气还是有点炎热的。不知道诸位老铁们有没有买今年秋天的第一杯奶茶&#xff0c;反正小编我是下班到家吃饭的时候买了一杯伯牙绝弦&#xff0c;喝起来味道还是不错的&#xff0c;而且奶茶店里今天几乎爆满&#xff0c;我足足等了30分钟才…

计算机网络面试-核心概念-问题理解

目录 1.计算机网络OSI协议七层结构功能分别是什么&#xff1f;如何理解这些功能 2.物理层、数据链路层、网络层、传输层和应用层&#xff0c;这五个层之间功能的关系&#xff0c;或者说是否存在协调关系 3. 数据链路层功能理解 4.MAC地址和以太网协议 5.以太网协议中的CSMA…

第十八节、野猪撞墙判定和等候计时

一、野猪撞墙修改 1、判断地面 2、检测半径迁移至头部 3、设置前后的监测点 二、自动调整检测半径 玩家的检测半径实现自动调整 bounds 是正常世界窗口的碰触体外框 这一章节很复杂观看代码physicalcheck和enemy

IT治理体系:构建企业数字化转型的基石

随着信息技术的飞速发展&#xff0c;企业数字化转型已成为不可逆转的趋势。在这一进程中&#xff0c;IT治理体系作为指导、控制和监督信息技术资源使用与管理的框架&#xff0c;其重要性日益凸显。它不仅关乎企业信息系统的稳定运行&#xff0c;更是推动业务创新、提升竞争力、…

计算机毕业设计选题推荐-基于网页开发和数据抓取技术的在线新闻聚合平台-Java/Python项目实战

✨作者主页&#xff1a;IT毕设梦工厂✨ 个人简介&#xff1a;曾从事计算机专业培训教学&#xff0c;擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Py…

从源码剖析Java线程池的工作机制

文章目录 从源码剖析Java线程池的工作机制一、序言二、基础概念1、线程调度模型2、线程池创建方式&#xff08;1&#xff09;Executors工具类&#xff08;2&#xff09;ThreadPoolExecutor构造方法2.1 核心参数2.3 拒绝策略实现 三、源码剖析1、状态控制变量ctl2、线程执行exec…

MindSearch:AI 时代的“思考型”搜索引擎

随着AI技术的飞速发展&#xff0c;搜索引擎领域也迎来了新的变革。继 OpenAI 发布 SearchGPT 之后&#xff0c;国内也涌现出一批优秀的AI搜索引擎&#xff0c;其中&#xff0c;由中科大和上海人工智能实验室联合研发的 MindSearch&#xff08;思索&#xff09;尤为引人注目。这…

php收银系统源码-线上下单,门店接单

1.收银系统开发语言 核心开发语言: PHP、HTML5、Dart后台接口: PHP7.3后合管理网站: HTML5vue2.0element-uicssjs线下收银台&#xff08;安卓/PC收银、安卓自助收银&#xff09;: Dart3框架&#xff1a;Flutter 3.19.6助手: uniapp商城: uniapp 2.线上商城下单&#xff0c;门…

theaterjs使用

import theaterJS from "theaterjs"; interface ITheaterOptions {autoplay?: boolean;minSpeed?: {type: number;erase: number;};maxSpeed?: {type: number;erase: number;}; } export default function useTheater(id: string, options: ITheaterOptions, addS…

变压器耦合放大器(低频应用+高频应用)

2024-8-7&#xff0c;星期三&#xff0c;22:49&#xff0c;天气&#xff1a;晴&#xff0c;心情&#xff1a;晴。下班抽出点时间看看书&#xff0c;话不多说&#xff0c;学习开始啦。 今日继续学习模电自选教材的第六章&#xff0c;多级放大器、RF放大器和功率放大器。主要学习…

【Linux】进程概念—环境变量

目录 一、冯诺依曼体系结构 二、操作系统(Operator System) 1 .概念 2 .设计OS的目的 3 . 定位 4 . 系统调用和库函数概念 三、进程 1 .基本概念 2 .描述进程-PCB&#xff08;process control block&#xff09;进程控制块 3 . 组织进程 4 . 查看进程 5 .通过系统调用获取进程…

【iMSTK】第一期 imstk配置过程

很高兴在雪易的CSDN遇见你 VTK技术爱好者 QQ&#xff1a;870202403 公众号&#xff1a;VTK忠粉 前言 本文分享imstk的配置和使用过程&#xff0c;希望对各位小伙伴有所帮助&#xff01; 感谢各位小伙伴的点赞关注&#xff0c;小易会继续努力分享&#xff0c;一起进步&…

man手册安装

1.什么是man手册 &#xff08;输入man man) linux系统提供的有关函数或指令介绍的相关帮助手册&#xff0c;可以在该手册也中查看函数、指令功能&#xff0c;说白了就是相关操作说明书&#xff0c;一共有七章&#xff0c;主要使用前三章&#xff0c;第一章是shell指令相关说明…

TPS和QPS达到多少才算高并发?

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐&#xff1a;「storm…

操作系统 IO 相关知识

操作系统 IO 相关知识 阻塞与非阻塞同步与异步IO 和系统调用传统的 IODMAmmap 内存映射sendfilesplice 常用的 IO 模型BIO&#xff1a;同步阻塞 IONIO&#xff1a;同步非阻塞 IOIO 多路复用信号驱动 IOAIO&#xff1a;异步 IO 模型 IO 就是计算机内部与外部进行数据传输的过程&…