ComfyUI是一个基于web的图形用户界面,用于直观地构建和运行AI模型流程。它特别适合于使用Stable Diffusion等模型进行图像生成任务。然而,ComfyUI本身并不直接提供老照片修复的功能,但你可以通过组合不同的节点来实现这一目标。
老照片修复通常涉及到几个关键步骤:
图像去噪:去除照片中的噪声。
色彩恢复:如果照片是黑白的,可能需要上色。
细节增强:增强照片的清晰度和细节。
超分辨率:提高照片的分辨率。
修复损坏部分:修复照片上的裂痕或缺失部分。
以下是一个基本的工作流示例,你可以根据自己的需求调整:
Load Image - 加载你的老照片。
Image Denoise - 使用一个去噪节点处理图像。
Colorization - 如果是黑白照片,可以使用上色节点如Colorful Image Colorization。
Enhance Detail - 使用一个增强细节的节点,例如ESPCN或Real-ESRGAN。
Super Resolution - 通过超分辨率节点提高图像质量,如ESPCN或Real-ESRGAN。
Inpainting - 如果照片有损坏的部分,可以使用Inpainting节点修复。
在ComfyUI中,你需要将这些节点连接起来形成一个工作流,然后运行它。每个节点的具体设置(如模型选择、参数调整)会根据你使用的具体版本和模型而有所不同。
{
“last_node_id”: 55,
“last_link_id”: 76,
“nodes”: [
{
“id”: 13,
“type”: “VAEEncodeForInpaint”,
“pos”: [
230,
1620
],
“size”: {
“0”: 260,
“1”: 100
},
“flags”: {},
“order”: 16,
“mode”: 0,
“inputs”: [
{
“name”: “pixels”,
“type”: “IMAGE”,
“link”: 60,
“label”: “图像”
},
{
“name”: “vae”,
“type”: “VAE”,
“link”: null,
“label”: “VAE”
},
{
“name”: “mask”,
“type”: “MASK”,
“link”: 49,
“label”: “遮罩”
}
],
“outputs”: [
{
“name”: “LATENT”,
“type”: “LATENT”,
“links”: [
15,
19
],
“shape”: 3,
“slot_index”: 0,
“label”: “Latent”
}
],
“properties”: {
“Node name for S&R”: “VAEEncodeForInpaint”
},
“widgets_values”: [
6
],
“color”: “#1f1f48”
},
{
“id”: 18,
“type”: “SelfAttentionGuidance”,
“pos”: [
90,
1320
],
“size”: {
“0”: 220,
“1”: 82
},
“flags”: {},
“order”: 0,
“mode”: 0,
“inputs”: [
{
“name”: “model”,
“type”: “MODEL”,
“link”: null,
“label”: “模型”
}
],
“outputs”: [
{
“name”: “MODEL”,
“type”: “MODEL”,
“links”: [
10
],
“shape”: 3,
“slot_index”: 0,
“label”: “模型”
}
],
“properties”: {
“Node name for S&R”: “SelfAttentionGuidance”
},
“widgets_values”: [
0.5,
2
],
“color”: “#1f1f48”
},
{
“id”: 16,
“type”: “INPAINT_ApplyFooocusInpaint”,
“pos”: [
570,
1480
],
“size”: {
“0”: 220,
“1”: 66
},
“flags”: {},
“order”: 17,
“mode”: 0,
“inputs”: [
{
“name”: “model”,
“type”: “MODEL”,
“link”: 17,
“label”: “模型”
},
{
“name”: “patch”,
“type”: “INPAINT_PATCH”,
“link”: 75,
“slot_index”: 1,
“label”: “局部重绘组件”
},
{
“name”: “latent”,
“type”: “LATENT”,
“link”: 19,
“label”: “Latent”
}
],
“outputs”: [
{
“name”: “MODEL”,
“type”: “MODEL”,
“links”: [
12,
28
],
“shape”: 3,
“slot_index”: 0,
“label”: “模型”
}
],
“properties”: {
“Node name for S&R”: “INPAINT_ApplyFooocusInpaint”
},
“color”: “#1f1f48”
},
{
“id”: 21,
“type”: “INPAINT_ApplyFooocusInpaint”,
“pos”: [
2110,
1320
],
“size”: {
“0”: 180,
“1”: 120
},
“flags”: {},
“order”: 22,
“mode”: 0,
“inputs”: [
{
“name”: “model”,
“type”: “MODEL”,
“link”: 28,
“label”: “模型”
},
{
“name”: “patch”,
“type”: “INPAINT_PATCH”,
“link”: 76,
“slot_index”: 1,
“label”: “局部重绘组件”
},
{
“name”: “latent”,
“type”: “LATENT”,
“link”: 30,
“label”: “Latent”
}
],
“outputs”: [
{
“name”: “MODEL”,
“type”: “MODEL”,
“links”: [
24
],
“shape”: 3,
“slot_index”: 0,
“label”: “模型”
}
],
“properties”: {
“Node name for S&R”: “INPAINT_ApplyFooocusInpaint”
},
“color”: “#1f1f48”
},
{
“id”: 22,
“type”: “VAEDecode”,
“pos”: [
2750,
1300
],
“size”: {
“0”: 140,
“1”: 60
},
“flags”: {},
“order”: 24,
“mode”: 0,
“inputs”: [
{
“name”: “samples”,
“type”: “LATENT”,
“link”: 31,
“label”: “Latent”
},
{
“name”: “vae”,
“type”: “VAE”,
“link”: null,
“label”: “VAE”
}
],
“outputs”: [
{
“name”: “IMAGE”,
“type”: “IMAGE”,
“links”: [
35,
48
],
“shape”: 3,
“slot_index”: 0,
“label”: “图像”
}
],
“properties”: {
“Node name for S&R”: “VAEDecode”
},
“c