GitHub最全中文排行榜开源项目,助你轻松发现优质资源!

news2025/1/20 22:42:10

文章目录

  • GitHub-Chinese-Top-Charts:中文开发者的开源项目精选
    • 项目介绍
      • 项目特点
      • 核心功能
        • 1. 热门项目榜单
        • 2. 详细项目信息
      • 如何使用
        • 覆盖范围
          • 软件类
          • 资料类

GitHub-Chinese-Top-Charts:中文开发者的开源项目精选

在全球范围内,GitHub已经成为了开源项目的首选平台。成千上万的开发者在这里分享他们的代码,合作开发项目,推动技术的发展。然而,在这个庞大的开源生态系统中,如何发现高质量的中文开源项目?GitHub-Chinese-Top-Charts应运而生。

在这里插入图片描述

项目介绍

GitHub-Chinese-Top-Charts 是一个专门收集和整理GitHub上优秀中文开源项目的仓库。这个项目的目标是帮助开发者更方便地找到高质量的中文开源项目,促进中文社区的开源文化,推动技术进步。

项目特点

  1. 定期更新:项目会定期更新,确保收录的项目都是最新的和最受欢迎的。通过自动化脚本,实时抓取GitHub上的数据,保证榜单的及时性和准确性。

  2. 多维度分类:项目根据不同的编程语言、技术栈和应用场景进行分类,如Python、Java、前端、后端、人工智能、大数据等。开发者可以根据自己的需求快速找到对应领域的优秀项目。

  3. 综合评分:项目不仅仅根据Star数量进行排序,还结合Fork数量、Issue讨论热度等多个维度进行综合评分,确保推荐的项目在多个方面都具有较高的质量。

核心功能

1. 热门项目榜单

GitHub-Chinese-Top-Charts 提供了各类热门项目的榜单,开发者可以通过这些榜单快速了解当前最流行的中文开源项目。例如:

  • 综合榜单:综合评分最高的项目。
  • 语言分类榜单:如Python、JavaScript、Java、Go等各编程语言的热门项目。
  • 技术分类榜单:如前端框架、后端框架、机器学习、大数据等领域的优秀项目。
2. 详细项目信息

每个项目都会展示详细的信息,包括项目简介、Star数、Fork数、最新更新时间、主要贡献者等。开发者可以通过这些信息快速了解项目的基本情况。

如何使用

GitHub-Chinese-Top-Charts 的使用非常简单,开发者只需访问 项目主页 即可查看各类榜单和详细项目信息。项目主页提供了清晰的目录和分类,开发者可以根据自己的需求快速找到感兴趣的项目。

覆盖范围

在这里插入图片描述

软件类

在这里插入图片描述

资料类

在这里插入图片描述

开源是技术发展的重要推动力,GitHub-Chinese-Top-Charts 通过聚合和推荐优秀的中文开源项目,为开发者提供了极大的便利。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1976480.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

谷歌外链:提升网站权重的秘密武器!

谷歌外链之被称为提升网站权重的秘密武器,主要是因为它们对网站的搜索引擎排名有着直接且显著的影响 谷歌和其他搜索引擎使用外链作为衡量网站信任度和权威性的重要指标。当一个网站获得来自其他信誉良好的源的链接时,这被视为信任的投票。多个高质量链…

opencv-图像仿射变换

仿射变换就是将矩形变为平行四边形,而透视变换可以变成任意不规则四边形。实际上,仿射变换是透视变换的子集,仿射变换是线性变换,而透视变换不仅仅是线性变换。 仿射变换设计图像位置角度的变化,是深度学习预处理中常…

力扣SQL50 患某种疾病的患者 正则表达式

Problem: 1527. 患某种疾病的患者 在SQL查询中,REGEXP 是用于执行正则表达式匹配的操作符。正则表达式允许使用特殊字符和模式来匹配字符串中的特定文本。具体到你的查询,^DIAB1|\\sDIAB1 是一个正则表达式,它使用了一些特殊的通配符和符号。…

Vue:vue-router使用指南

一、简介 点击查看vue-router官网 Vue Router 是 Vue.js 的官方路由。它与 Vue.js 核心深度集成,让用 Vue.js 构建单页应用变得轻而易举。功能包括: 嵌套路由映射动态路由选择模块化、基于组件的路由配置-路由参数、查询、通配符-展示由 Vue.js 的过渡系…

DNS常见面试题

DNS是什么? 域名使用字符串来代替 IP 地址,方便用户记忆,本质上一个名字空间系统;DNS 是一个树状的分布式查询系统,但为了提高查询效率,外围有多级的缓存;DNS 就像是我们现实世界里的电话本、查…

电路板热仿真覆铜率,功率,结温,热阻率信息计算获取方法总结

🏡《电子元器件学习目录》 目录 1,概述2,覆铜率3,功率4,器件尺寸5,结温6,热阻1,概述 电路板热仿真操作是一个复杂且细致的过程,旨在评估和优化电路板内部的热分布及温度变化,以确保电子元件的可靠性和性能。本文简述在进行电路板的热仿真时,元器件热信息的计算方法…

59.DevecoStudio项目引入不同目录的文件进行函数调用

59.DevecoStudio ArkUI项目引入不同目录的文件进行函数调用 arkUi,ets,cj文件,ts文件的引用 import common from ohos.app.ability.common; import stringutils from ./uint8array2string; //index.ts的当前目录 import StringUtils2 from ../http2/uint8array2st…

python全栈开发《23.字符串的find与index函数》

1.补充说明上文 python全栈开发《22.字符串的startswith和endswith函数》 endswith和startswith也可以对完整(整体)的字符串进行判断。 info.endswith(this is a string example!!)或info.startswith(this is a string example!!)相当于bool(info this …

鸿蒙媒体开发【拼图】拍照和图片

拼图 介绍 该示例通过ohos.multimedia.image和ohos.file.photoAccessHelper接口实现获取图片,以及图片裁剪分割的功能。 效果预览 使用说明: 使用预置相机拍照后启动应用,应用首页会读取设备内的图片文件并展示获取到的第一个图片&#x…

Animate软件基础:关于补间动画中的图层

Animate 文档中的每一个场景都可以包含任意数量的时间轴图层。使用图层和图层文件夹可组织动画序列的内容和分隔动画对象。在图层和文件夹中组织它们可防止它们在重叠时相互擦除、连接或分段。若要创建一次包含多个元件或文本字段的补间移动的动画,请将每个对象放置…

go 中 string 并发写导致的 panic

类型的一点变化 在Go语言的演化过程中,引入了unsafe.String来取代之前的StringHeader结构体,这是为了提供更安全和简洁的字符串操作方式。 旧设计 (StringHeader 结构体) StringHeader注释发生了一点变动,被标注了 Deprecated,…

谷粒商城实战笔记-103~104-全文检索-ElasticSearch-Docker安装ES和Kibana

文章目录 一,103-全文检索-ElasticSearch-Docker安装ES1,下载镜像文件2,Elasticsearch安装3,验证 二,104-全文检索-ElasticSearch-Docker安装Kibana1,下载镜像文件2,kibana的安装3,验…

【数据结构算法经典题目刨析(c语言)】环形链表的约瑟夫问题(图文详解)

💓 博客主页:C-SDN花园GGbond ⏩ 文章专栏:数据结构经典题目刨析(c语言) 一.前言: 前言——著名的Josephus问题 据说著名犹太 Josephus有过以下的故事:在罗⻢⼈占领乔塔帕特后,39个犹太⼈与Josephus及他…

ansible 配置yum源

ansible配置yum源 有两种方式,一种是可以写好sh脚本,然后ansible去执行sh文件 另外一种就是使用yum_repository库 本文讲使用库的方式 本文使用的环境是centos7 ,配置也是按照7去配置的,没有写动态配置 直接上代码 [rootvm-2 ~…

《技术人求职之道》之求职机遇篇:多渠道并进,如何高效获取面试机会

摘要 本文探讨了求职过程中获取面试机会的多种途径,强调简历优化的重要性,并指出了不同求职方式的优劣及其适用情况。文章首先介绍通过企业挖掘、内部推荐、猎头服务、社会招聘和校园招聘等途径获得面试机会的方法,并根据成功率和适用性为这些方法排序。然后,详细讨论了每…

门控循环单元GRU

目录 一、GRU提出的背景:1.RNN存在的问题:2.GRU的思想: 二、更新门和重置门:三、GRU网络架构:1.更新门和重置门如何发挥作用:1.1候选隐藏状态H~t:1.2隐藏状态Ht: 2.GRU: 四、训练过程…

当自回归遇到Diffusion

文章目录 Autoregressive Image Generation without Vector Quantization一. 简介1.1 摘要1.1 引言二.相关工作2.1 Sequence Models for Image Generation2.2 Diffusion for Representation Learning2.3 Diffusion for Policy Learning三.方法3.1 重新思考离散值的tokens3.2 Di…

Kotlin OpenCV 图像图像50 Haar 级联分类器模型

Kotlin OpenCV 图像图像50 Haar 级联分类器模型 1 OpenCV Haar 级联分类器模型2 Kotlin OpenCV Haar 测试代码 1 OpenCV Haar 级联分类器模型 Haar级联分类器是一种用于对象检测(如人脸检测)的机器学习算法。它由Paul Viola和Michael Jones在2001年提出…

conda环境pip 安装Tensorflow-gpu 2.10.2提示nbconvert 的包依赖冲突

问题如下: ERROR: pip’s dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. nbconvert 7.16.4 requires beautifulsoup4, which is not inst…

DETR论文详解

文章目录 前言一、DETR理论二、模型架构1. CNN2. Transformer3. FFN 三、损失函数四、代码实现总结 前言 DETR是Facebook团队在2020年提出的一篇论文,名字叫做《End-to-End Object Detection with Transformers》端到端的基于Transformers的目标检测,DET…