【Golang 面试 - 进阶题】每日 3 题(十四)

news2024/9/22 9:46:57

✍个人博客:Pandaconda-CSDN博客

📣专栏地址:http://t.csdnimg.cn/UWz06

📚专栏简介:在这个专栏中,我将会分享 Golang 面试中常见的面试题给大家~
❤️如果有收获的话,欢迎点赞👍收藏📁,您的支持就是我创作的最大动力💪

40. 基 于信号的抢占式调度

在 golang 中,除了协作式调度和抢占式调度,还有一种基于信号的抢占式调度。基于信号的抢占式调度可以让 Goroutine 在执行过程中被立即中断,并强制切换到其他 Goroutine,从而实现抢占式调度。

在 golang 中,我们可以使用 runtime 包中的两个函数实现基于信号的抢占式调度:

  • runtime.Gosched():让出 CPU 时间片,让其他 Goroutine 运行。

  • runtime.LockOSThread():将当前 Goroutine 绑定到当前线程上,让该 Goroutine 独占一个线程,从而实现更精细的调度控制。

下面是一个简单的基于信号的抢占式调度的示例代码:

package main
import (
    "fmt"
    "runtime"
    "time"
)
func main() {
    go func() {
        for {
            fmt.Println("Goroutine 1 is running")
            runtime.Gosched()
        }
    }()
    go func() {
        for {
            fmt.Println("Goroutine 2 is running")
            runtime.Gosched()
        }
    }()
    for {
        fmt.Println("Main Goroutine is running")
        time.Sleep(time.Second)
    }
}

在这个示例代码中,我们定义了三个 Goroutine,分别是“Goroutine 1”、“Goroutine 2”和“Main Goroutine”。其中,“Goroutine 1”和“Goroutine 2”分别不断输出自己的名称,并在每次输出后使用 runtime.Gosched() 函数让出 CPU 时间片,从而实现抢占式调度。而“Main Goroutine”每秒输出一次自己的名称,并使用 time.Sleep() 函数暂停一秒钟,从而实现协作式调度。

需要注意的是,基于信号的抢占式调度不适用于所有场景,因为频繁调用 runtime.Gosched() 函数会导致性能下降,应该根据实际需求进行选择。

41. Go 如何查 看运行时调度信息?

有 2 种方式可以查看一个程序的调度 GMP 信息,分别是 go tool trace 和 GODEBUG。

trace.go

package main
import (
    "fmt"
    "os"
    "runtime/trace"
    "time"
)
func main() {
    //创建trace文件
    f, err := os.Create("trace.out")
    if err != nil {
        panic(err)
    }
    defer f.Close()
    //启动trace goroutine
    err = trace.Start(f)
    if err != nil {
        panic(err)
    }
    defer trace.Stop()
    //main
    for i := 0; i < 5; i++ {
        time.Sleep(time.Second)
        fmt.Println("Hello World")
    }
}

go tool trace

启动可视化界面:

go run trace.go
go tool trace trace.out
2022/04/22 10:44:11 Parsing trace...
2022/04/22 10:44:11 Splitting trace...
2022/04/22 10:44:11 Opening browser. Trace viewer is listening on http://127.0.0.1:35488

打开 http://127.0.0.1:35488 查看可视化界面:

  

点击 view trace 能够看见可视化的调度流程:

  

一共有 2 个 G 在程序中,一个是特殊的 G0,是每个 M 必须有的一个初始化的 G,另外一个是 G1 main goroutine (执行 main 函数的协程),在一段时间内处于可运行和运行的状态。

1. 点击 Thr eads 那一行可视化的数据条,我们会看到 M 详细的信息

  

一共有 2 个 M 在程序中,一个是特殊的 M0,用于初始化使用,另外一个是用于执行 G1 的 M1。

2. 点击 Proc  那一行可视化的数据条,我们会看到 P 上正在运行 goroutine 详细的信息

一共有 3 个 P 在程序中,分别是 P0、P1、P2。

  

点击具体的 Goroutine 行为后可以看到其相关联的详细信息:

Start:开始时间
Wall Duration:持续时间
Self Time:执行时间
Start Stack Trace:开始时的堆栈信息
End Stack Trace:结束时的堆栈信息
Incoming flow:输入流
Outgoing flow:输出流
Preceding events:之前的事件
Following events:之后的事件
All connected:所有连接的事件

GODEBUG

GODEBUG 变量可以控制运行时内的调试变量。查看调度器信息,将会使用如下两个参数:

  • schedtrace:设置 schedtrace=X 参数可以使运行时在每 X 毫秒发出一行调度器的摘要信息到标准 err 输出中。

  • scheddetail:设置 schedtrace=Xscheddetail=1 可以使运行时在每 X 毫秒发出一次详细的多行信息,信息内容主要包括调度程序、处理器、OS 线程 和 Goroutine 的状态。

查看基本信息

go build trace.go
GODEBUG=schedtrace=1000 ./trace
SCHED 0ms: gomaxprocs=8 idleprocs=6 threads=4 spinningthreads=1 idlethreads=0 runqueue=0 [1 0 0 0 0 0 0 0]
Hello World
SCHED 1010ms: gomaxprocs=8 idleprocs=8 threads=4 spinningthreads=0 idlethreads=2 runqueue=0 [0 0 0 0 0 0 0 0]
Hello World
SCHED 2014ms: gomaxprocs=8 idleprocs=8 threads=4 spinningthreads=0 idlethreads=2 runqueue=0 [0 0 0 0 0 0 0 0]
Hello World
SCHED 3024ms: gomaxprocs=8 idleprocs=8 threads=4 spinningthreads=0 idlethreads=2 runqueue=0 [0 0 0 0 0 0 0 0]
Hello World
SCHED 4027ms: gomaxprocs=8 idleprocs=8 threads=4 spinningthreads=0 idlethreads=2 runqueue=0 [0 0 0 0 0 0 0 0]
Hello World
SCHED 5029ms: gomaxprocs=8 idleprocs=7 threads=4 spinningthreads=0 idlethreads=2 runqueue=0 [0 0 0 0 0 0 0 0]

sched:每一行都代表调度器的调试信息,后面提示的毫秒数表示启动到现在的运行时间,输出的时间间隔受 schedtrace 的值影响。

gomaxprocs:当前的 CPU 核心数(GOMAXPROCS 的当前值)。

idleprocs:空闲的处理器数量,后面的数字表示当前的空闲数量。

threads:OS 线程数量,后面的数字表示当前正在运行的线程数量。

spinningthreads:自旋状态的 OS 线程数量。

idlethreads:空闲的线程数量。

runqueue:全局队列中中的 Goroutine 数量,而后面的[0 0 0 0 0 0 0 0] 则分别代表这 8 个 P 的本地队列正在运行的 Goroutine 数量。

查看详细信息

go build trace.go
GODEBUG=scheddetail=1,schedtrace=1000 ./trace
SCHED 0ms: gomaxprocs=8 idleprocs=6 threads=4 spinningthreads=1 idlethreads=0 runqueue=0 gcwaiting=0 nmidlelocked=0 stopwait=0 sysmonwait=0
  P0: status=0 schedtick=0 syscalltick=0 m=-1 runqsize=1 gfreecnt=0 timerslen=0
  P1: status=1 schedtick=0 syscalltick=0 m=2 runqsize=0 gfreecnt=0 timerslen=0
  P2: status=0 schedtick=0 syscalltick=0 m=-1 runqsize=0 gfreecnt=0 timerslen=0
  P3: status=0 schedtick=0 syscalltick=0 m=-1 runqsize=0 gfreecnt=0 timerslen=0
  P4: status=0 schedtick=0 syscalltick=0 m=-1 runqsize=0 gfreecnt=0 timerslen=0
  P5: status=0 schedtick=0 syscalltick=0 m=-1 runqsize=0 gfreecnt=0 timerslen=0
  P6: status=0 schedtick=0 syscalltick=0 m=-1 runqsize=0 gfreecnt=0 timerslen=0
  P7: status=0 schedtick=0 syscalltick=0 m=-1 runqsize=0 gfreecnt=0 timerslen=0
  M3: p=0 curg=-1 mallocing=0 throwing=0 preemptoff= locks=1 dying=0 spinning=false blocked=false lockedg=-1
  M2: p=1 curg=-1 mallocing=0 throwing=0 preemptoff= locks=2 dying=0 spinning=false blocked=false lockedg=-1
  M1: p=-1 curg=-1 mallocing=0 throwing=0 preemptoff= locks=2 dying=0 spinning=false blocked=false lockedg=-1
  M0: p=-1 curg=-1 mallocing=0 throwing=0 preemptoff= locks=1 dying=0 spinning=false blocked=false lockedg=1
  G1: status=1(chan receive) m=-1 lockedm=0
  G2: status=1() m=-1 lockedm=-1
  G3: status=1() m=-1 lockedm=-1
  G4: status=4(GC scavenge wait) m=-1 lockedm=-1

G

status:G 的运行状态。
m:隶属哪一个 M。
lockedm:是否有锁定 M。

G 的运行状态共涉及如下 9 种状态:

状态含义
_Gidle0刚刚被分配,还没有进行初始化。
_Grunnable1已经在运行队列中,还没有执行用户代码。
_Grunning2不在运行队列里中,已经可以执行用户代码,此时已经分配了 M 和 P。
_Gsyscall3正在执行系统调用,此时分配了 M。
_Gwaiting4在运行时被阻止,没有执行用户代码,也不在运行队列中,此时它正在某处阻塞等待中。
_Gmoribund_unused5尚未使用,但是在 gdb 中进行了硬编码。
_Gdead6尚未使用,这个状态可能是刚退出或是刚被初始化,此时它并没有执行用户代码,有可能有也有可能没有分配堆栈。
_Genqueue_unused7尚未使用。
_Gcopystack8正在复制堆栈,并没有执行用户代码,也不在运行队列中。

M

p:隶属哪一个 P。
curg:当前正在使用哪个 G。
runqsize:运行队列中的 G 数量。
gfreecnt:可用的G(状态为 Gdead)。
mallocing:是否正在分配内存。
throwing:是否抛出异常。
preemptoff:不等于空字符串的话,保持 curg 在这个 m 上运行。

P

status:P 的运行状态。
schedtick:P 的调度次数。
syscalltick:P 的系统调用次数。
m:隶属哪一个 M。
runqsize:运行队列中的 G 数量。
gfreecnt:可用的G(状态为 Gdead)
状态含义
_Pidle0刚刚被分配,还没有进行进行初始化。
_Prunning1当 M 与 P 绑定调用 acquirep 时,P 的状态会改变为 _Prunning。
_Psyscall2正在执行系统调用。
_Pgcstop3暂停运行,此时系统正在进行 GC,直至 GC 结束后才会转变到下一个状态阶段。
_Pdead4废弃,不再使用。

42. GMP 调度过程中存在哪些阻塞?

在 GMP(GNU 多精度算术库)调度过程中,可能会存在以下几种阻塞情况:

  1. IO 阻塞:当 GMP 库进行 IO 操作时,如果 IO 操作需要等待数据读取或写入,此时 GMP 库的调度可能会被阻塞。

  2. 系统调用阻塞:当 GMP 库使用系统调用时,如申请内存、获取时间等,如果系统调用需要等待结果返回,此时 GMP 库的调度可能会被阻塞。

  3. 锁竞争阻塞:当多个线程同时访问 GMP 库的同一个数据结构时,可能会出现锁竞争的情况,如果某个线程获得锁并持有锁的时间过长,其他线程的调度可能会被阻塞。

  4. 垃圾回收阻塞:在 GMP 库中,存在一种称为 “垃圾回收” 的机制,用于释放不再使用的内存。当垃圾回收机制启动时,所有线程的调度都会被暂停,直到垃圾回收完成。

总之,GMP 调度过程中的阻塞情况可能会导致程序执行时间延长,因此在编写 GMP 应用程序时需要考虑如何避免或减少阻塞情况的发生。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1974068.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

实战:MySQL数据同步神器之Canal

1.概叙 场景一&#xff1a;数据增量实时同步 项目中业务数据量比较大&#xff0c;每类业务表都达到千万级别&#xff0c;虽然做了分库分表&#xff0c;每张表数据控制在300W以下&#xff0c;但是效率还是达不到要求&#xff0c;为了提高查询效率&#xff0c;打算使用ES进行数…

Java面试题--JVM大厂篇之破解Java性能瓶颈!深入理解Parallel GC并优化你的应用

目录 引言&#xff1a; 正文&#xff1a; 1. 理解Parallel GC的工作原理 2. 配置Parallel GC 3. 监控和分析GC日志 4. 常见调优技巧 5. 持续迭代和优化 结束语&#xff1a; 补充考虑 1. 综合考虑吞吐量与响应时间 2. 评估和优化垃圾回收频率 3. 动态调整与自适应策…

定期自动巡检,及时发现机房运维管理中的潜在问题

随着信息化技术的迅猛发展&#xff0c;机房作为企业数据处理与存储的核心场所&#xff0c;其运维管理的复杂性和挑战性也与日俱增。为确保机房设备的稳定运行和业务的连续性&#xff0c;运维团队必须定期进行全面的巡检。然而&#xff0c;传统的手工巡检方式不仅效率低下&#…

【卷积神经网络】基于CIFAR10数据集实现图像分类【构建、训练、预测】

文章目录 1、内容简介2、CIFAR10 数据集2.1、数据集概述2.2、代码使用2.2.1、查看数据集基本信息2.2.2、数据加载器2.2.3、完整代码 3、搭建图像分类网络&#x1f53a;3.1、网络结构⭐3.2、代码构建网络⭐ 4、编写训练函数4.1、多分类交叉熵损失函数&#x1f53a;4.2、Adam&…

泛微开发修炼之旅--41Ecology基于触发器实现增量数据同步(人员、部门、岗位、人员关系表、人岗关系表)

一、需求背景 我们在项目上遇到一个需求&#xff0c;需要将组织机构数据&#xff08;包含人员信息、部门信息、分部信息、人岗关系&#xff09;生成的增量数据&#xff0c;实时同步到三方的系统中&#xff0c;三方要求&#xff0c;只需要增量数据即可。 那么基于ecology系统&a…

【C++高阶】:C++11的深度解析上

✨ 心似白云常自在&#xff0c;意如流水任东西 &#x1f30f; &#x1f4c3;个人主页&#xff1a;island1314 &#x1f525;个人专栏&#xff1a;C学习 &#x1f680; 欢迎关注&#xff1a;&#x1f44d;点赞 &#x1f4…

数说故事|引爆社媒的森贝儿IP,品牌如何实现流量变现?

以可爱、雅痞、贱萌......的外表加魔性舞姿出圈的可爱小狗——森贝儿贵宾犬Milo&#xff0c;用“可爱微怒”的表情演绎着当代打工人的“疯态”&#xff0c;并迅速晋升成不少打工人高频使用的表情包。 最近几年&#xff0c;“萌系”爆款IP频出&#xff0c;用小动物的形象、可爱…

一键生成视频并批量上传视频抖音、bilibili、腾讯(已打包)

GenerateAndAutoupload Github地址&#xff1a;https://github.com/cmdch2017/GenerateAndAutoupload 如何下载&#xff08;找到最新的release&#xff09; https://github.com/cmdch2017/GenerateAndAutoupload/releases/download/v1.0.1/v1.0.1.zip 启动必知道 conf.py …

Redis学习[5] ——Redis过期删除和内存淘汰

六、Redis过期键值删除 6.1 Redis的过期键值删除策略 6.1.1 什么是过期键值删除&#xff1f; Redis中是可以对key设置过期时间的&#xff0c;所以需要有相应的机制将已过期的键值对删除&#xff0c;也就是**过期键值删除策略。Redis会用一个过期字典&#xff08;expires dic…

如何改网络的ip地址:实用方法与步骤解析

在数字化时代&#xff0c;网络IP地址作为设备在互联网上的唯一标识&#xff0c;其重要性不言而喻。然而&#xff0c;在某些特定场景下&#xff0c;如网络测试、隐私保护或突破地域限制等&#xff0c;我们可能需要更改网络IP地址。那么&#xff0c;如何安全、有效地实现这一操作…

学习日志:update 没加索引会锁全表

文章目录 前言一、为什么会发生这种的事故如何避免这种事故的发生&#xff1f;总结 前言 在线上执行一条 update 语句修改数据库数据的时候&#xff0c;where 条件没有带上索引&#xff0c;导致业务直接崩了 为什么会发生这种的事故&#xff1f; 又该如何避免这种事故的发生&a…

html+css練習:iconfont使用

1.網址地址&#xff1a;https://www.iconfont.cn/search/index 2.註冊登錄&#xff0c;將需要的圖標添加到購物車 3.下載代碼 4.下載后的代碼有一個html頁面&#xff0c;裡面有詳細的使用方式

Linux进程间通信学习2

文章目录 共享内存信号信号概述以及种类信号的处理信号相关函数&#xff08;简单&#xff09;运用小demo实现ctrlc无法终止进程使用kill函数在程序内部实现一个进程杀死另外一个进程 信号相关函数高级版运用函数小demo 信号量信号量相关函数运用小demo: 共享内存 相比于前三个…

基于微信小程序的宠物服务平台(系统源码+lw+部署文档+讲解等)

文章目录 目录 详细视频演示 系统详细设计截图 微信小程序系统的实现 1.1系统前台功能的实现 2.1微信小程序开发环境搭建 2.2微信开发者工具 2.3程序应用相关技术和知识 2.3.1小程序目录结构以及框架介绍 2.3.2 Java技术 2.3.3 MySQL数据库 2.3.4 SSM框架 源码获…

构建铁路安全防线:EasyCVR视频+AI智能分析赋能铁路上道作业高效监管

一、方案背景 随着我国铁路特别是高速铁路的快速发展&#xff0c;铁路运营里程不断增加&#xff0c;铁路沿线的安全环境对保障铁路运输的安全畅通及人民群众的生命财产安全具有至关重要的作用。铁路沿线安全环境复杂多变&#xff0c;涉及多种风险因素&#xff0c;如人员入侵、…

函数递归超详解!

目录 1.什么是递归调用&#xff1f; 直接调用 间接调用 2.什么是递归&#xff1f; 3.递归举例 3.1求n!的阶乘 3.1.1.非递归法 3.1.2.递归法 3.1.2.1分析和代码实现 3.2顺序打印一个整数的每一位 3.2.1分析和代码实现 4.递归与迭代 4.1举例&#xff1a;斐波那契数列 …

开放式耳机更适合运动的时候使用?开放式耳机推荐指南

开放式耳机确实非常适合运动时使用&#xff0c;原因主要有以下几点。 首先&#xff0c;保持对外界的感知是很重要的一点。在运动的时候&#xff0c;我们需要听到周围的环境声音&#xff0c;比如车辆的行驶声、行人的呼喊等&#xff0c;以便及时做出反应&#xff0c;保证自身安全…

【MySQL】索引概念解析

1.什么是索引&#xff1f; MySQL中的索引是一种数据结构&#xff0c;用于帮助MySQL数据库管理系统快速查询数据。索引的主要目的是提高数据检索的速度&#xff0c;减少数据库系统需要扫描的数据量。 优点&#xff1a; 索引可以极大的提高数据检索效率&#xff0c;降低数据库…

【Nuxt】配置

Nuxt 配置 nuxt.config.ts 里面可以添加相关配置&#xff1a; runtimeConfig 运行时配置。 // https://nuxt.com/docs/api/configuration/nuxt-config export default defineNuxtConfig({compatibilityDate: 2024-04-03,devtools: {enabled: true},runtimeConfig: {appKey: …

手拉手模型笔记and一线三角笔记

手拉手模型 基本需要&#xff1a;两个 顶角相等 的 等腰 三角形 共 顶点 反手拉手: 等边 等腰 R t △ 等边\\等腰Rt△ 等边等腰Rt△ 左手拉左手&#xff0c;右手拉右手( − 红线 − \textcolor{red}{-红线-} −红线−): △ A B D ≅ △ A C E ( S A S ) △ABD \cong △ACE(S…