并发编程--CyclicBarrier 和 CountDownLatch

news2024/9/9 4:58:05

CountDownLatch(倒计时器)

定义:

    CountDownLatch 允许 count 个线程阻塞在一个地方,直至所有线程的任务都执行完毕。CountDownLatch 是共享锁的一种实现,它默认构造 AQS 的 state 值为 count

            当线程使用 countDown() 方法时,其实使用了tryReleaseShared方法以 CAS 的操作来减少 state,直至 state 为 0 。当调用 await() 方法的时候,如果 state 不为 0,那就证明任务还没有执行完毕,await() 方法就会一直阻塞,也就是说 await() 方法之后的语句不会被执行。然后,CountDownLatch 会自旋 CAS 判断 state == 0,如果 state == 0 的话,就会释放所有等待的线程,await() 方法之后的语句得到执行。

注意:计数器必须大于等于0,只是等于0时候,计数器就是零,调用await方法时不会
阻塞当前线程。CountDownLatch不可能重新初始化或者修改CountDownLatch对象的内部计数器的值。一个线程调用countDown方法happen-before,另外一个线程调用await方法。

CountDownLatch 的两种典型用法

  1. 某一线程在开始运行前等待 n 个线程执行完毕。将 CountDownLatch 的计数器初始化为 n :new CountDownLatch(n),每当一个任务线程执行完毕,就将计数器减 1 countdownlatch.countDown(),当计数器的值变为 0 时,在CountDownLatch上 await() 的线程就会被唤醒。一个典型应用场景就是启动一个服务时,主线程需要等待多个组件加载完毕,之后再继续执行。

  2. 实现多个线程开始执行任务的最大并行性。注意是并行性,不是并发,强调的是多个线程在某一时刻同时开始执行。类似于赛跑,将多个线程放到起点,等待发令枪响,然后同时开跑。做法是初始化一个共享的 CountDownLatch 对象,将其计数器初始化为 1 :new CountDownLatch(1),多个线程在开始执行任务前首先 coundownlatch.await(),当主线程调用 countDown() 时,计数器变为 0,多个线程同时被唤醒。

CountDownLatch 的使用示例

实例1
public class CountDownLatchExample1 {
  // 请求的数量
  private static final int threadCount = 550;

  public static void main(String[] args) throws InterruptedException {
    // 创建一个具有固定线程数量的线程池对象(如果这里线程池的线程数量给太少的话你会发现执行的很慢)
    ExecutorService threadPool = Executors.newFixedThreadPool(300);
    final CountDownLatch countDownLatch = new CountDownLatch(threadCount);
    for (int i = 0; i < threadCount; i++) {
      final int threadnum = i;
      threadPool.execute(() -> {// Lambda 表达式的运用
        try {
          test(threadnum);
        } catch (InterruptedException e) {
          // TODO Auto-generated catch block
          e.printStackTrace();
        } finally {
          countDownLatch.countDown();// 表示一个请求已经被完成
        }

      });
    }
    countDownLatch.await();
    threadPool.shutdown();
    System.out.println("finish");
  }

  public static void test(int threadnum) throws InterruptedException {
    Thread.sleep(1000);// 模拟请求的耗时操作
    System.out.println("threadnum:" + threadnum);
    Thread.sleep(1000);// 模拟请求的耗时操作
  }
}

解释:

        上边的代码将CountDownLatch代码设置成550,也就是说当执countDownLatch.await();的时候,需要执行550次的countDownLatch.countDown();,所以在当前线程上使用await,需要等在主线程创建的线程都执行完并且countDown完成后,才可以继续执行await后面的代码

实例2
public class CountDownLatchTest {
    staticCountDownLatch c = new CountDownLatch(2);
    public static void main(String[] args) throws InterruptedException {
            new Thread(new Runnable() {
                @Override
                public void run() {
                    System.out.println(1);
                    c.countDown();
                    System.out.println(2);
                    c.countDown();
            }
           }).start();
           c.await();
           System.out.println("3");
}

解释:

        上边的代码将CountDownLatch代码设置成2,也就是说当执countDownLatch.await();的时候,需要执行2次的countDownLatch.countDown();,当前线程上创建了一个子线程,子线程中进行2次countDown,也就是说只有当子线程全部执行完后才能执行后续的输出

        只能是这个顺序(1->2->3),当子线程输出完1的时候准备输出2的时候,只进行了1次的countDown操作,所以当前线程还需要继续等待

那么重点来了:

        CountDownLatch 是一次性的,计数器的值只能在构造方法中初始化一次,之后没有任何机制再次对其设置值,当 CountDownLatch 使用完毕后,它不能再次被使用

CyclicBarrier(循环栅栏)

定义:

        CyclicBarrier 和 CountDownLatch 非常类似,它也可以实现线程间的技术等待,但是它的功能比 CountDownLatch 更加复杂和强大。主要应用场景和 CountDownLatch 类似。

        CyclicBarrier 的字面意思是可循环使用(Cyclic)的屏障(Barrier)。它要做的事情是,让一组线程到达一个屏障(也可以叫同步点)时被阻塞,直到最后一个线程到达屏障时,屏障才会开门,所有被屏障拦截的线程才会继续干活。CyclicBarrier 默认的构造方法是 CyclicBarrier(int parties),其参数表示屏障拦截的线程数量,每个线程调用await方法告诉 CyclicBarrier 我已经到达了屏障,然后当前线程被阻塞。

通俗的解释就是:每个线程调用await方法告CyclicBarrier我已到达了屏障,然后当前线程被阻塞。当await的次数到达创建CyclicBarrier规定的次数的时候一同放开

代码实例

public class CyclicBarrierExample3 {
  // 请求的数量
  private static final int threadCount = 550;
  // 需要同步的线程数量
  private static final CyclicBarrier cyclicBarrier = new CyclicBarrier(5, () -> {
    System.out.println("------当线程数达到之后,优先执行------");
  });

  public static void main(String[] args) throws InterruptedException {
    // 创建线程池
    ExecutorService threadPool = Executors.newFixedThreadPool(10);

    for (int i = 0; i < threadCount; i++) {
      final int threadNum = i;
      Thread.sleep(1000);
      threadPool.execute(() -> {
        try {
          test(threadNum);
        } catch (InterruptedException e) {
          // TODO Auto-generated catch block
          e.printStackTrace();
        } catch (BrokenBarrierException e) {
          // TODO Auto-generated catch block
          e.printStackTrace();
        }
      });
    }
    threadPool.shutdown();
  }

  public static void test(int threadnum) throws InterruptedException, BrokenBarrierException {
    System.out.println("threadnum:" + threadnum + "is ready");
    cyclicBarrier.await();
    System.out.println("threadnum:" + threadnum + "is finish");
  }

}

解释:

    首先CyclicBarrier 还提供一个更高级的构造函数CyclicBarrier(int parties, Runnable barrierAction),用于在线程到达屏障时,优先执行barrierAction,方便处理更复杂的业务场景。 也就是我们那句CyclicBarrier(int parties, Runnable barrierAction) ,也就是说当await到达次数的时候会优先执行barrierAction线程,然后再去执行请求的线程

 上边的代码是5个线程一同执行,并且可以循环执行,这个效果是CountDownLatch不能实现的,CountDownLatch是计数的只能执行1次

    重点:    同时CyclicBarrier还可以使用reset()重置次数,例如定义CyclicBarrier为5,此时已经执行了3次await,此时出现了计算错误需要重新计算,那么即可使用reset()重置次数

CyclicBarrier 和 CountDownLatch 的区别

        CountDownLatch 是计数器,只能使用一次,而 CyclicBarrier 的计数器提供 reset 功能,可以多次使用。但是我不那么认为它们之间的区别仅仅就是这么简单的一点。

        对于 CountDownLatch 来说,重点是“一个线程(多个线程)等待”,而其他的 N 个线程在完成“某件事情”之后,可以终止,也可以等待。而对于 CyclicBarrier,重点是多个线程,在任意一个线程没有完成,所有的线程都必须等待。

        CountDownLatch 是计数器,线程完成一个记录一个,只不过计数不是递增而是递减,而 CyclicBarrier 更像是一个阀门,需要所有线程都到达,阀门才能打开,然后继续执行。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1961405.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python数值计算(11)——拉格朗日插值

本篇介绍一下多项式插值中&#xff0c;拉格朗日法的原理及其实现。 1. 一点数学知识 先引用数学背景。如果给定N个点&#xff0c;然后要求一个多项式通过这N个点&#xff0c;最简单直接的方式是列出线性方程求解&#xff0c;N个点可以确定N个未知量&#xff0c;则所求的拟合多…

下面关于枚举的描述正确的一项是?

A. 枚举中定义的每一个枚举项其类型都是String&#xff1b; B. 在Java中可以直接继承java.util.Enum类实现枚举类的定义&#xff1b; C. 利用枚举类中的values()方法可以取得全部的枚举项&#xff1b; D. 枚举中定义的构造方法只能够使用private权限声明&#xff1b; 答案选择…

springboot山东外事职业大学校园食堂点餐系统-计算机毕业设计源码10417

摘 要 近年来&#xff0c;随着国民收入的提高&#xff0c;各行业取得长足进步&#xff0c;也带动了互联网行业的快速发展&#xff0c;许多传统行业开始与互联网相结合&#xff0c;通过数字化转型打造新的发展生态。 本文针对山东外事大学校园食堂点餐系统的需求&#xff0c;基于…

Java内存区域与内存溢出异常详解

在Java编程中&#xff0c;理解Java虚拟机的内存布局及其管理机制对于开发高效、稳定的应用程序至关重要。Java虚拟机的内存主要分为几个运行时区域&#xff0c;这些区域各司其职&#xff0c;共同支撑起Java程序的运行。本文将详细探讨Java虚拟机的内存区域以及这些区域如何与内…

Yolov模型的使用及数据集准备(1)LabelImg的下载和使用

1、LabelImg下载&#xff1a; labelimg简单来说就是打标签用的软件&#xff0c;当需要使用自定义数据集进行模型训练时&#xff0c;往往需要使用该软件来打标签。 下载地址&#xff1a;GitHub - HumanSignal/labelImg 1.1下载之后对压缩包进行解压 2、打开电脑的anaconda pro…

MyBatis XML配置文件

目录 一、引入依赖 二、配置数据库的连接信息 三、实现持久层代码 3.1 添加mapper接口 3.2 添加UserInfoXMLMapper.xml 3.3 增删改查操作 3.3.1 增(insert) 3.3.2 删(delete) 3.3.3 改(update) 3.3.4 查(select) 本篇内容仍然衔接上篇内容&#xff0c;使用的代码及案…

8G 显存玩转书生大模型 Demo

创建可用环境 # 创建环境 conda create -n demo python3.10 -y # 激活环境 conda activate demo # 安装 torch conda install pytorch2.1.2 torchvision0.16.2 torchaudio2.1.2 pytorch-cuda12.1 -c pytorch -c nvidia -y # 安装其他依赖 pip install transformers4.38 pip in…

Moving Object Segmentation: All You Need Is SAM(and Flow) 论文详解

系列文章目录 文章目录 系列文章目录前言摘要1 引言2 相关工作3 SAM Preliminaries4 帧级分割Ⅰ&#xff1a;以流作为输入5 帧级分割Ⅱ&#xff1a;以流为提示6 序列级掩膜关联7 实验7.1 数据集7.2 评价指标7 .3 实施细节7.4 消融实验7.5 定量结果7 .定性可视化 8 结论致谢附录…

01 - 计算机组成原理与体系结构

文章目录 一&#xff0c;计算机系统硬件基本组成硬件软件 二&#xff0c;CPU的功能与组成功能组成运算器控制器 三&#xff0c;数据表示计算机的基本单位进制转换原码&#xff0c;反码&#xff0c;补码&#xff0c;移码数值表示范围浮点数表示 四&#xff0c;寻址五&#xff0c…

【Unity模型】古代亚洲建筑

在Unity Asset Store上&#xff0c;一款名为"Ancient Asian Buildings Pack"&#xff08;古代亚洲建筑包&#xff09;的3D模型资源包&#xff0c;为广大开发者和设计师提供了一个将古代亚洲建筑风格融入Unity项目的机会。本文将详细介绍这款资源包的特点、使用方式以…

如何选择合适的自动化测试工具!

选择合适的自动化测试工具是一个涉及多方面因素的决策过程。以下是一些关键步骤和考虑因素&#xff0c;帮助您做出明智的选择&#xff1a; 一、明确测试需求和目标 测试范围&#xff1a;确定需要自动化的测试类型&#xff08;如单元测试、集成测试、UI测试等&#xff09;和测试…

AI视频实战教程:DiffIR2VR-Zero-模糊视频8K高清修复技术

〔探索AI的无限可能&#xff0c;微信关注“AIGCmagic”公众号&#xff0c;让AIGC科技点亮生活〕 本文作者&#xff1a;AIGCmagic社区 猫先生 一、简 介 DiffIR2VR-Zero&#xff1a;一种创新的零样本视频恢复技术&#xff0c;该技术利用预训练的图像恢复模型&#xff0c;解决…

C++高性能通信:图形简述高性能中间件Iceoryx

文章目录 1. 概述2. 支持一个发布者多个订阅者2.2 Iceoryx为何不支持多个发布者发布到同一个主题 3. Iceoryx的架构和数据传输示意图3.1 发布者与订阅者的通信机制3.2 零拷贝共享内存通信机制 4. 使用事件驱动机制4.1 WaitSet机制4.2 Listener机制 5. 已知限制6. 参考 1. 概述 …

sci-hub下载不了的文献去哪里获取全文

我们在查找外文文献时经常会用到sci-hub&#xff0c;但sci-hub也有没有收录的文献&#xff0c;遇到这种情况我们可以用另一个途径来获取该文献。 例如这篇Wiley数据库中的文献&#xff1a;Unveiling Gating Behavior in Piezoionic Effect: toward Neuromimetic Tactile Sensin…

Linux服务管理(四)Apache服务

Apache服务 1、基于IP的虚拟主机2、基于IP端口的虚拟主机3、基于域名的虚拟主机4、prefork模式5、worker模式6、event模式7、细说驱动工作模式和MPM&#xff08;多处理模块&#xff09;工作模式 新旧域名都保留&#xff0c;因为旧域名已有一定的知名度和流量&#xff0c;直接下…

Cocos Creator2D游戏开发(8)-飞机大战(6)-炸机

碰撞 飞机与飞机碰撞 子弹与飞机碰撞 ① 设置碰撞矩阵 设置碰撞矩阵,就是设置谁跟谁碰撞(添加Enemy,PlayerBullet,Player) ②设置刚体和碰撞体 两个预制体设置(Enemy和PlayerBullet) 注意点: 1. 都在预制体节点上,不在图片上; 2.碰撞体Collider2D中的Editing悬着好之后可以调整…

C#-读取测序数据的ABI文件并绘制svg格式峰图-施工中

本地环境&#xff1a;win10&#xff0c;visual studio 2022 community 目录 前言问题描述解决思路实现效果 前言 本文是在已有的代码基础上进行的开发&#xff0c;前期已经实现&#xff1a; ABI文件的解析峰图的简单绘制svg绘图 对于1&#xff0c;主要用到之前重写的struct包…

大模型面经之bert和gpt区别

BERT和GPT是自然语言处理&#xff08;NLP&#xff09;领域中的两种重要预训练语言模型&#xff0c;它们在多个方面存在显著的区别。以下是对BERT和GPT区别的详细分析。 一、模型基础与架构 BERT&#xff1a; 全称&#xff1a;Bidirectional Encoder Representations from Trans…

系统移植(九)Linux内核移植(未整理)

文章目录 一、概念二、在linux内核源码的arch/arm/configs目录下生成FSMP1A板子对应的默认配置文件三、将自己编写的驱动通过图形化界面的方式编译到内核的镜像文件uImage中&#xff08;一&#xff09;拷贝myled.c和myled.h文件到linux内核源码的drivers/char目录下&#xff08…

第15周 15.1 Zookeeper简介安装及基础使用

1. Zookeeper介绍 1.1 介绍 1.2 应用场景简介 1.3 zookeeper工作原理 1.4 zookeeper特点