《Java初阶数据结构》----6.<优先级队列之PriorityQueue底层:堆>

news2025/1/19 8:08:45

前言

      大家好,我目前在学习java。之前也学了一段时间,但是没有发布博客。时间过的真的很快。我会利用好这个暑假,来复习之前学过的内容,并整理好之前写过的博客进行发布。如果博客中有错误或者没有读懂的地方。热烈欢迎大家在评论区进行讨论!!!

      喜欢我文章的兄弟姐妹们可以点赞,收藏和评论我的文章。喜欢我的兄弟姐妹们以及也想复习一遍java知识的兄弟姐妹们可以关注我呦,我会持续更新滴,
     望支持!!!!!!一起加油呀!!!!

语言只是工具,不能决定你好不好找工作,决定你好不好找工作的是你的能力!!!!!

学历本科及以上就够用了!!!!!!!!!!!!!!!!!!!!!!


本篇博客主要讲解Java基础语法中的

堆的概念及实现、堆的性质、堆的创建、堆的插入与删除、堆的应用。

下一篇文章我们会重点将优先级队列


一、优先级队列

1.1什么是优先级队列

        前面我们了解过队列是一种先进先出(FIFO)的数据结构。但有些情况下,操作的数据可能带有优先级,一般出队列时,可能需要优先级高的元素先出队列。此时普通队列就不适用了。因此我们引入优先级队列。

数据结构应该提供两个最基本的操作,一个是返回最高优先级对象一个是添加新的对象。这种数据结构就是优先级队列(Priority Queue)。

 1.2优先级队列的实现

JDK1.8中的PriorityQueue底层使用了这种数据结构

堆:实际就是在完全二叉树的基础上进行了一些调整。

二、堆

2.1堆的概念 

如果有一个关键码的集合K = {k0,k1, k2,…,kn-1},把它的所有元素按完全二叉树的顺序存储方式存储在一 个一维数组中,并满足: Ki <=  K2i+1 且 Ki <= K2i+2( Ki >=  K2i+1 且 Ki >= K2i+2) i = 0,1,2…,则称为 小堆(或大堆)。将根节点最大的堆叫做最大堆大根堆,根节点最小的堆叫做最小堆小根堆

2.2堆的性质

堆的性质:

  • 堆中某个节点的值总是不大于或不小于其父节点的值;
  • 堆总是一棵完全二叉树。 

2.3 堆的存储方式

从堆的概念可知,堆是一棵完全二叉树,因此可以层序的规则采用顺序的方式来高效存储, 

注意:对于非完全二叉树,则不适合使用顺序方式进行存储,因为为了能够还原二叉树,空间中必须要存储空节 点,就会导致空间利用率比较低。

将元素存储到数组中后,可以根据二叉树章节的性质5对树进行还原。假设i为节点在数组中的下标,则有:

  • 如果i为0,则i表示的节点为根节点,否则i节点的双亲节点为 (i - 1)/2
  • 如果2 * i + 1 小于节点个数,则节点i的左孩子下标为2 * i + 1,否则没有左孩子
  • 如果2 * i + 2 小于节点个数,则节点i的右孩子下标为2 * i + 2,否则没有右孩子 

2.4 堆的创建

2.4.1 堆向下调整

根节点的左右子树满足堆的特性(创建堆)

对于集合{ 27,15,19,18,28,34,65,49,25,37 }中的数据,如果将其创建成堆呢?

仔细观察上图后发现:根节点的左右子树已经完全满足堆的性质,因此只需将根节点向下调整好即可。

向下过程(以小堆为例):

1. 让parent标记需要调整的节点,child标记parent的左孩子(注意:parent如果有孩子一定先是有左孩子)

2. 如果parent的左孩子存在,即:child < size, 进行以下操作,直到parent的左孩子不存在

parent右孩子是否存在,存在找到左右孩子中最小的孩子,让child进行标

将parent与较小的孩子child比较,

如果:

  • parent小于较小的孩子child,调整结束
  • 否则:交换parent与较小的孩子child,交换完成之后,parent中大的元素向下移动,可能导致子 树不满足对的性质,因此需要继续向下调整,即parent = child;child = parent*2+1; 然后继续2。

代码实现

public void shiftDown(int[] array, int parent) {
    // child先标记parent的左孩子,因为parent可能右左没有右
    int child = 2 * parent + 1;
    int size = array.length;
    
    while (child < size) {
        
        // 如果右孩子存在,找到左右孩子中较小的孩子,用child进行标记
        if(child+1 < size && array[child+1] < array[child]){
            child += 1;
       }
        
        // 如果双亲比其最小的孩子还小,说明该结构已经满足堆的特性了
        if (array[parent] <= array[child]) {
            break;
       }else{
            // 将双亲与较小的孩子交换
       int t = array[parent];
       array[parent] = array[child];
       array[child] = t;
            
            // parent中大的元素往下移动,可能会造成子树不满足堆的性质,因此需要继续向下调整
            parent = child;
            child = parent * 2 + 1;
       }
   }
}

注意:在调整以parent为根的二叉树时,必须要满足parent的左子树和右子树已经是堆了才可以向下调整。 时间复杂度分析:

最坏的情况即图示的情况,从根一路比较到叶子,比较的次数为完全二叉树的高度,即时间复杂度为O(logN)  

2.4.2根节点的左右子树不满足堆的特性(创建堆)

那对于普通的序列{ 1,5,3,8,7,6 },即根节点的左右子树不满足堆的特性,又该如何调整呢?

代码示例 

public static void createHeap(int[] array) {
    // 找倒数第一个非叶子节点,从该节点位置开始往前一直到根节点,遇到一个节点,应用向下调整
    int root = ((array.length-2)>>1);
    for (; root >= 0; root--) {
        shiftDown(array, root);
   }
}

2.4.3 建堆的时间复杂度 

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是 近似值,多几个节点不影响最终结果):

因此:建堆的时间复杂度为O(N)。

2.5 堆的插入与删除

2.5.1 堆的插入

堆的插入总共需要两个步骤:

1. 先将元素放入到底层空间中(注意:空间不够时需要扩容)

2. 将最后新插入的节点向上调整,直到满足堆的性质

代码实现

public void shiftUp(int child) {
    // 找到child的双亲
     int parent = (child - 1) / 2;
    
    while (child > 0) {
        // 如果双亲比孩子大,parent满足堆的性质,调整结束
        if (array[parent] > array[child]) {
            break;
       }
        else{
            // 将双亲与孩子节点进行交换 
            int t = array[parent];
            array[parent] = array[child];
            array[child] = t;
        
            // 小的元素向下移动,可能到值子树不满足对的性质,因此需要继续向上调增
            child = parent;
            parent = (child - 1) / 1;
       }
   }
}

2.5.2 堆的删除 

注意:堆的删除一定删除的是堆顶元素。具体如下:

1. 将堆顶元素对堆中最后一个元素交换

2. 将堆中有效数据个数减少一个

3. 对堆顶元素进行向下调整

2.5用堆模拟优先级队列

public class MyPriorityQueue {
    // 演示作用,不再考虑扩容部分的代码
    private int[] array = new int[100];
    private int size = 0;
    
    public void offer(int e) {
        array[size++] = e;
        shiftUp(size - 1);
   }
    
    public int poll() {
        int oldValue = array[0];
        array[0] = array[--size];
        shiftDown(0);
        return oldValue;
   }
    
    public int peek() {
        return array[0];
   }
}

三、堆的应用

3.1 PriorityQueue的实现

用堆作为底层结构封装优先级队列

3.2 堆排序

堆排序即利用堆的思想来进行排序,总共分为两个步骤:

①建堆

升序:建大堆

降序:建小堆

②利用堆删除思想来进行排序

建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1949331.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Golang | Leetcode Golang题解之第290题单词规律

题目&#xff1a; 题解&#xff1a; func wordPattern(pattern string, s string) bool {word2ch : map[string]byte{}ch2word : map[byte]string{}words : strings.Split(s, " ")if len(pattern) ! len(words) {return false}for i, word : range words {ch : patt…

【Python实战因果推断】56_因果推理概论6

目录 Causal Quantities: An Example Bias Causal Quantities: An Example 让我们看看在我们的商业问题中&#xff0c;你如何定义这些量。首先&#xff0c;你要注意到&#xff0c;你永远无法知道价格削减&#xff08;即促销活动&#xff09;对某个特定商家的确切影响&#xf…

算法 定长按组翻转链表

一、题目 已知一个链表的头部head&#xff0c;每k个结点为一组&#xff0c;按组翻转。要求返回翻转后的头部 k是一个正整数&#xff0c;它的值小于等于链表长度。如果节点总数不是k的整数倍&#xff0c;则剩余的结点保留原来的顺序。示例如下&#xff1a; &#xff08;要求不…

数据集成工具之kettle

Kettle 是一个用于数据集成的开源工具&#xff0c;由 Pentaho 开发&#xff0c;现已由 Hitachi Vantara 维护。Kettle 的全名是 Pentaho Data Integration (PDI)&#xff0c;主要用于数据提取、转换和加载&#xff08;ETL&#xff09;过程。 1. 核心组件 Spoon: 图形化的设计工…

【MetaGPT系列】【MetaGPT完全实践宝典——多智能体实践】

目录 前言一、智能体1-1、Agent概述1-2、Agent与ChatGPT的区别 二、多智能体框架MetaGPT2-1、安装&配置2-2、使用已有的Agent&#xff08;ProductManager&#xff09;2-3、多智能体系统介绍2-4、多智能体案例分析2-4-1、构建智能体团队2-4-2、动作/行为 定义2-4-3、角色/智…

mysql面试(六)

前言 本章节详细讲解了一下mysql执行计划相关的属性释义&#xff0c;以及不同sql所出现的不同效果 执行计划 一条查询语句经过mysql查询优化器的各种基于成本和各种规则优化之后&#xff0c;会生成一个所谓的 执行计划&#xff0c;这个执行计划展示了这条查询语句具体查询方…

Qt自定义MessageToast

效果&#xff1a; 文字长度自适应&#xff0c;自动居中到parent&#xff0c;会透明渐变消失。 CustomToast::MessageToast(QS("最多添加50张图片"),this);1. CustomToast.h #pragma once#include <QFrame>class CustomToast : public QFrame {Q_OBJECT pub…

广义线性模型(2)线性回归

线性回归算法应该是大多数人机器学习之路上的第一站&#xff0c;因为线性回归算法原理简单清晰&#xff0c;但却囊括了拟合、优化等等经典的机器学习思想。 说到线性回归&#xff0c;我们得先说说回归与分类、线性与非线性这些概念的区别。 一 分类与回归的区别 机器学习中的…

【虚拟机】Windows(x86)上部署ARM虚拟机(Ubuntu)

【虚拟机】Windows&#xff08;x86&#xff09;上部署ARM虚拟机&#xff08;Ubuntu&#xff09; 零、起因 最近在学嵌入式&#xff0c;这就不得不涉及ARM指令集&#xff0c;但是电脑是x86指令集的&#xff0c;用手机不太方便&#xff0c;买开发板又要等几天……&#xff0c;总…

商场导航系统:从电子地图到AR导航,提升顾客体验与运营效率的智能解决方案

商场是集娱乐、休闲、社交于一体的综合性消费空间&#xff0c;随着商场规模的不断扩大和布局的日益复杂&#xff0c;顾客在享受丰富选择的同时&#xff0c;也面临着寻路难、店铺曝光率低以及商场管理效率低下等挑战。商场导航系统作为提升购物体验的关键因素&#xff0c;其重要…

springcloud RocketMQ 客户端是怎么走到消费业务逻辑的 - debug step by step

springcloud RocketMQ &#xff0c;一个mq消息发送后&#xff0c;客户端是怎么一步步拿到消息去消费的&#xff1f;我们要从代码层面探究这个问题。 找的流程图&#xff0c;有待考究。 以下我们开始debug&#xff1a; 拉取数据的线程&#xff1a; PullMessageService.java 本…

【无标KaiwuDB CTO 魏可伟:差异化创新,面向行业的多模架构题】

2024年7月16日&#xff0c;KaiwuDB CTO 魏可伟受邀于 2024 可信数据库发展大会主论坛发表演讲《多模一库 —— KaiwuDB 的现代数据库架构探索》&#xff0c;以下是演讲精华实录。 多模数据库 是顺应时代发展与融合趋势的产物 数据模型最早始于网状模型和层次模型&#xff0c;…

删除的视频怎样才能恢复?详尽指南

在日常生活中&#xff0c;我们有时会不小心删除一些重要的视频文件&#xff0c;或者在整理存储空间时不慎丢失了珍贵的记忆片段。这时候&#xff0c;我们可以通过一些数据恢复工具和技巧&#xff0c;找回这些被删除的视频。本文将详细介绍几种常见且有效的视频恢复方法&#xf…

升腾c92安装ubuntu20.04 server(二)

一、本人使用大白菜制作的U盘安装ubuntu服务出现了如下错误 通过晚上查询知道&#xff0c;出现unable to find a medium containing a live file system 是因为U盘和升腾c92的u口不匹配导致&#xff0c;解决方案如下&#xff1a; 一、安装软碟通 在安装完软碟通之后&#xf…

git 版本回退-idea

1、选中项目&#xff0c;右键&#xff0c;打开 git历史提交记录 2、选中想要回退的版本&#xff0c;选择 hard&#xff08;不保留版本记录&#xff09; 3、最终选择强制提交&#xff08;必须强制&#xff09; OK&#xff0c;搞定

合作伙伴中心Partner Center中添加了Copilot预览版

目录 一、引言 二、Copilot 功能概述 2.1 Copilot 简介 2.2 Copilot 的核心功能 2.3 Copilot 的访问和使用 三、Copilot 的使用方法 3.1 Copilot 功能区域 3.2 Copilot 使用示例 3.2.1 编写有效提示 3.2.2 使用反馈循环 四、负责任的人工智能 4.1 Copilot 结果的可…

Docker 安全及日志管理(包含SSL证书)

目录 一、Docker 存在的安全问题 二、Docker 架构缺陷与安全机制 三、Docker 安全基线标准 四、容器相关的常用安全配置方法 五、限制流量流向 六、镜像安全 七、DockerClient 端与 DockerDaemon 的通信安全 https的单向认证流程 https的双向认证流程 八、DockerClie…

实时同步:使用 Canal 和 Kafka 解决 MySQL 与缓存的数据一致性问题

目录 1. 准备工作 2. 将需要缓存的数据存储 Redis 3. 监听 canal 存储在 Kafka Topic 中数据 1. 准备工作 1. 开启并配置MySQL的 BinLog&#xff08;MySQL 8.0 默认开启&#xff09; 修改配置&#xff1a;C:\ProgramData\MySQL\MySQL Server 8.0\my.ini log-bin"HELO…

STM32——GPIO(LED闪烁)

一、什么是GPIO&#xff1f; GPIO&#xff08;通用输入输出接口&#xff09;&#xff1a; 1.GPIO 功能概述 GPIO 是通用输入/输出&#xff08;General Purpose I/O&#xff09;的简称&#xff0c;既能当输入口使用&#xff0c;又能当输出口使用。端口&#xff0c;就是元器件…

HTML常用的转义字符——怎么在网页中写“<div></div>”?

一、问题描述 如果需要在网页中写“<div></div>”怎么办呢&#xff1f; 使用转义字符 如果直接写“<div></div>”&#xff0c;编译器会把它翻译为块&#xff0c;类似的&#xff0c;其他的标签也是如此&#xff0c;所以如果要在网页中写类似于“<div…