【MetaGPT系列】【MetaGPT完全实践宝典——多智能体实践】

news2025/1/19 8:16:04

目录

  • 前言
  • 一、智能体
    • 1-1、Agent概述
    • 1-2、Agent与ChatGPT的区别
  • 二、多智能体框架MetaGPT
    • 2-1、安装&配置
    • 2-2、使用已有的Agent(ProductManager)
    • 2-3、多智能体系统介绍
    • 2-4、多智能体案例分析
      • 2-4-1、构建智能体团队
      • 2-4-2、动作/行为 定义
      • 2-4-3、角色/智能体 定义
      • 2-4-4、创建队伍,添加角色
      • 2-4-5、内部机制介绍
      • 2-4-6、人工介入
      • 2-4-7、记忆/内存
  • 附录
    • 1、react_mode(智能体的思维范式介绍)
      • 1-1、ReAct
      • 1-2、By order
      • 1-3、Plan and act
  • 总结


前言

用公式来讲,智能体=大语言模型LLM+观察+思考+行动+记忆

一、智能体

1-1、Agent概述

Agent(智能体): 具有一定自主性和目标导向性,可以在没有持续人类干预的情况下执行任务和作出决策。以下为Agent的一些特性:

(1)自主性和目标导向性

  • 自主性:Agent具备自主执行任务的能力,不需要外部指令即可根据设定的目标进行操作。
  • 目标导向性:Agent设置并追求特定的目标或任务,这些目标指导其决策过程和行为模式。

(2)复杂的工作流程

  • 任务规划与执行:Agent能够规划如何达到其目标,包括任务分解、优先级排序以及实际执行。
  • 自我对话和内部决策:在处理问题时,Agent可以进行内部对话,以自我推理和修正其行动路径,而无需外部输入。

(3)学习和适应能力

  • 反思和完善:Agent能从自身的经验中学习,评估过去的行为,从错误中吸取教训,并改进未来的策略。
  • 环境适应性:在遇到变化的环境或不同的挑战时,Agent能够适应并调整其行为以最大化目标达成。

(4)记忆机制

  • 短期记忆:使用上下文信息来做出即时决策。
  • 长期记忆:保留关键信息,供未来决策使用,通常通过外部数据库或持久存储实现。(例如使用向量数据库)

(5)工具使用与集成

  • API调用和外部数据访问:Agent可以利用外部资源(如API、数据库)来获取信息,填补其知识空白,或执行无法直接通过模型内部处理的任务。
  • 技术整合:Agent能整合多种技术和服务,如代码执行能力和专业数据库访问,以丰富其功能和提高效率。

LLM 驱动的自主Agents系统概述如下图所示:(包含工具调用、记忆、计划、执行模块)
在这里插入图片描述

1-2、Agent与ChatGPT的区别

Agent与ChatGPT的区别: Agent与ChatGPT在设计、功能和目标上有一些关键区别。虽然它们都是基于人工智能技术,但应用方式和交互性质大不相同。下面是这两者的主要区别:

(1)目标和自主性

  • ChatGPT:主要是一个响应型模型,专注于对用户的特定输入生成一次性、相关且连贯的回答。它的主要目的是解答问题、提供信息或进行对话模拟。
  • AI Agent:更强调在持续的任务中表现出自主性。它能够设定和追求长期目标,通过复杂的工作流程自主地完成任务,比如从错误中自我修正、连续地追踪任务进展等。

(2) 交互方式

  • ChatGPT:用户与ChatGPT的交互通常是线性的和短暂的,即用户提问,ChatGPT回答。它不保留交互的历史记忆,每次交互都是独立的。
  • AI Agent:可以维持跨会话的状态和记忆,具有维持长期对话的能力,能够自动执行任务并处理一系列相关活动,例如调用API、追踪和更新状态等。

(3)任务执行和规划能力

  • ChatGPT:通常只处理单个请求或任务,依赖用户输入来驱动对话。它不具备自我规划或执行连续任务的能力。
  • AI Agent:具备规划能力,可以自行决定执行哪些步骤以完成复杂任务。它可以处理任务序列,自动化决策和执行过程。

(4)技术整合与应用

  • ChatGPT:主要是文本生成工具,虽然能够通过插件访问外部信息,但核心依然是文本处理和生成。
  • AI Agent:可能整合多种技术和工具,如API调用、数据库访问、代码执行等,这些都是为了实现其目标和改善任务执行的效率。

(5)学习和适应

  • ChatGPT:它的训练是在离线进行,通过分析大量数据来改进。
  • AI Agent:除了离线学习,更复杂的AI Agent可能具备实时学习能力,能够从新的经验中迅速适应和改进,这通常需要一定的记忆和自我反思机制。

二、多智能体框架MetaGPT

在这里插入图片描述

2-1、安装&配置

安装: 必须要python版本在3.9以上 ,这里使用conda,尝鲜安装。

conda create -n metagpt python=3.9 && conda activate metagpt

开发模式下安装: 为开发人员推荐。实现新想法和定制化功能。

git clone https://github.com/geekan/MetaGPT.git
cd ./MetaGPT
pip install -e .

模型配置: 在文件 ~/.metagpt/config2.yaml下,有关于各大厂商模型的配置详细列表参考:LLM API Configuration

llm:
  api_type: "openai"  # or azure / ollama / groq etc. Check LLMType for more options
  model: "gpt-4-turbo"  # or gpt-3.5-turbo
  base_url: "https://api.openai.com/v1"  # or forward url / other llm url
  api_key: "YOUR_API_KEY"

2-2、使用已有的Agent(ProductManager)

概述: 调用ProductManager Agent,注意,会话上下文是需要独立创建的

import asyncio

from metagpt.context import Context
from metagpt.roles.product_manager import ProductManager
from metagpt.logs import logger

async def main():
    msg = "Write a PRD for a snake game"
    context = Context()  # The session Context object is explicitly created, and the Role object implicitly shares it automatically with its own Action object
    role = ProductManager(context=context)
    while msg:
        msg = await role.run(msg)
        logger.info(str(msg))

if __name__ == '__main__':
    asyncio.run(main())

输出结果:
在这里插入图片描述

2-3、多智能体系统介绍

多智能体系统: 即智能体社会,用公式表示为:

MultiAgent = 智能体 + 环境 + 标准化的操作程序(SOP)+ 通信 +经济

各个部分的详细介绍:

  • Agent:每个智能体都可能有独特的LLM、观察、思想、行动和记忆,在多智能体系统中,各个智能体协同工作,就像人类社会一样。
  • 环境: 环境是各个Agent交互的共同空间,Agent从环境中观察与自身有关的重要信息,并执行相应的操作。
  • 标准化操作程序(Standardized operating procedure): 即设置好的程序,用来管理智能体的行为以及智能体间的交互,确保系统的有序、高效进行。
  • 通讯:通讯,即Agent之间的信息交换。
  • 经济:指的是多智能体环境中的价值交换系统,决定了资源如何分配和任务的优先级。

简单示例:

在这里插入图片描述

具体介绍如下:

  • 在该环境下,三个智能体Alice、Bob、Charlie彼此交互。
  • 每个智能体都可以把信息或者是行为结果输出到环境中。
  • 以Agent——Charlie的内部进程为例(其他Agent类似),基于LLM,即决策🧠,并且拥有观察、思考、行动能力。思想和其进一步的行动主要是由LLM决策的,并且同时拥有使用工具的能力。
  • 智能体Charlie通过观察Alice智能体的相关文档以及Bob智能体的代码需求,参考上下文记忆,思考如何编写代码并采取行动,最终行动输出代码文件。
  • 智能体Charlie的输出结果刚好是智能体Bob观察的对象,智能体Bob在环境中得到了Charlie的输出结果,并且做出了进一步的响应。

2-4、多智能体案例分析

概述: 虽然单智能体可以解决很多任务,但是复杂的任务还是需要多智能体之间的协作。

2-4-1、构建智能体团队

构建智能体团队的步骤如下:

  • 定义每个能执行特定动作的角色
  • 标准化操作程序,即SOP的构建,确保每个角色遵守程序。实现过程:让每个角色观察自己的上游输出,根据上游输出做出相应的响应,并且输出内容到下游。
  • 初始化所有智能体,创建一个带有环境的队伍,让他们能够互相交互。(主要是根据上游角色发布到环境中的消息来做出响应。)

具体的智能体以及对应的行为定义如下:

  • 角色:SimpleCoder, 动作:SimpleWriteCode,接收用户指令并且写出主要代码
  • 角色:SimpleTester , 动作:SimpleWriteTest,从动作/行为SimpleWriteCode的输出中获取主要的代码并且提供测试用例。
  • 角色:SimpleReviewer , 动作:SimpleWriteReview,从动作/行为SimpleWriteTest 的输出中获取测试用例,检查测试用例的覆盖程度以及质量,输出报告。

2-4-2、动作/行为 定义

写代码行为如下:

from metagpt.actions import Action

class SimpleWriteCode(Action):
    PROMPT_TEMPLATE: str = """
    Write a python function that can {instruction}.
    Return ```python your_code_here ```with NO other texts,
    your code:
    """
    name: str = "SimpleWriteCode"

    async def run(self, instruction: str):
        prompt = self.PROMPT_TEMPLATE.format(instruction=instruction)

        rsp = await self._aask(prompt)

        code_text = parse_code(rsp)

        return code_text

测试用例代码书写行为如下:

class SimpleWriteTest(Action):
    PROMPT_TEMPLATE: str = """
    Context: {context}
    Write {k} unit tests using pytest for the given function, assuming you have imported it.
    Return ```python your_code_here ```with NO other texts,
    your code:
    """

    name: str = "SimpleWriteTest"

    async def run(self, context: str, k: int = 3):
        prompt = self.PROMPT_TEMPLATE.format(context=context, k=k)

        rsp = await self._aask(prompt)

        code_text = parse_code(rsp)

        return code_text

测试用例评审行为如下:

class SimpleWriteReview(Action):
    PROMPT_TEMPLATE: str = """
    Context: {context}
    Review the test cases and provide one critical comments:
    """

    name: str = "SimpleWriteReview"

    async def run(self, context: str):
        prompt = self.PROMPT_TEMPLATE.format(context=context)

        rsp = await self._aask(prompt)

        return rsp

2-4-3、角色/智能体 定义

写代码角色定义:

  • 使用set_actions函数,为角色装配行为。
  • 使用_watch函数,观察上游重要信息(来自于用户或者是其他智能体),这里UserRequirement代表的是用户输入
class SimpleCoder(Role):
    name: str = "Alice"
    profile: str = "SimpleCoder"

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self._watch([UserRequirement])
        self.set_actions([SimpleWriteCode])

代码测试角色定义:

  • 同样的, 使用set_actions函数,为角色装配行为。
  • 同理,使用_watch函数,观察上游重要信息(来自于用户或者是其他智能体),这里主要的观察来源是SimpleWriteCode。
  • 这里,重写act函数,使用所有对话内容作为测试行为的上下文,写出更加精准的测试用例。
class SimpleTester(Role):
    name: str = "Bob"
    profile: str = "SimpleTester"

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.set_actions([SimpleWriteTest])
        self._watch([SimpleWriteCode])
        # 既观察SimpleWriteCode,也观察SimpleWriteReview,这样可以做到一个循环的自我修正。
        # self._watch([SimpleWriteCode, SimpleWriteReview])  # feel free to try this too

    async def _act(self) -> Message:
        logger.info(f"{self._setting}: to do {self.rc.todo}({self.rc.todo.name})")
        todo = self.rc.todo

        # context = self.get_memories(k=1)[0].content # use the most recent memory as context
        context = self.get_memories()  # use all memories as context

        code_text = await todo.run(context, k=5)  # specify arguments
        msg = Message(content=code_text, role=self.profile, cause_by=type(todo))
		
        return msg

测试用例评审角色定义: 同上。

class SimpleReviewer(Role):
    name: str = "Charlie"
    profile: str = "SimpleReviewer"

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.set_actions([SimpleWriteReview])
        self._watch([SimpleWriteTest])

2-4-4、创建队伍,添加角色

概述: 使用Team来雇佣三位角色

  • idea: 即复杂任务描述,代表用户输入
  • investment: 投资人工智能公司的金额,暂时不清楚有什么用
  • n_round: 模拟的回合数,大部分情况,该数字越大越好,但是也并不是绝对的,简单任务,回合少点就ok,复杂任务需要调试一个相对均衡的回合。多了有可能复读机或者性能下降。
import asyncio
import typer
from metagpt.logs import logger
from metagpt.team import Team
app = typer.Typer()

@app.command()
def main(
    idea: str = typer.Argument(..., help="write a function that calculates the product of a list"),
    investment: float = typer.Option(default=3.0, help="Dollar amount to invest in the AI company."),
    n_round: int = typer.Option(default=5, help="Number of rounds for the simulation."),
):
    logger.info(idea)

    team = Team()
    team.hire(
        [
            SimpleCoder(),
            SimpleTester(),
            SimpleReviewer(),
        ]
    )

    team.invest(investment=investment)
    team.run_project(idea)
    asyncio.run(team.run(n_round=n_round))

if __name__ == '__main__':
    app()

输出:

在这里插入图片描述

2-4-5、内部机制介绍

概述: 详细介绍整个多智能体系统的运行机制。

  • 如右图所示,Role(智能体)将观察来自于环境的输出信息。(只观察特定Action,这要看参数设置)
  • 如果一个特定的行为输出了信息到环境,并且恰好是Role要观察的行为,那么Role将做出反馈。
  • 首先,Role将会思考并选择一种行为作为接下来要执行的,之后会执行该行为并且得到输出,输出后续将会被投入到环境中去。

在这里插入图片描述

2-4-6、人工介入

概述: 在真实场景下,我们往往需要人类介入来修正多智能体团队协作中的一些错误。

在2-4-4中,我们设置SimpleReviewer的is_human参数为True即可。这样我们可以控制协作流程,代替测试用例评审角色,作为测试用例评审角色来参与到整个流程中。每次轮到我们响应时(测试用例评审角色),正在运行的进程都会暂停等待我们的输入。我们可以根据其他Agent的输出,提出合理要求以参与到整个交互中。

team.hire(
    [
        SimpleCoder(),
        SimpleTester(),
        # SimpleReviewer(), # the original line
        SimpleReviewer(is_human=True), # change to this line
    ]
)

2-4-7、记忆/内存

概述: 记忆是Agent的核心,Agent需要依靠记忆来做决策。类Memory是Agent记忆的抽象表示,当角色初始化时,以self.rc.memory初始化记忆,它将把它随后观察到的每条消息存储在一个列表中,以便将来检索。当记录的记忆被需要时,你可以使用self.get_memories来获取记忆。

def get_memories(self, k=0) -> list[Message]:
    """A wrapper to return the most recent k memories of this role, return all when k=0"""
    return self.rc.memory.get(k=k)

例如在2-4-3中: 我们调用整个函数是为了向测试智能体提供完整的历史记录。

async def _act(self) -> Message:
        logger.info(f"{self._setting}: ready to {self.rc.todo}")
        todo = self.rc.todo

        # context = self.get_memories(k=1)[0].content # use the most recent memory as context
        context = self.get_memories() # use all memories as context

        code_text = await todo.run(context, k=5) # specify arguments

        msg = Message(content=code_text, role=self.profile, cause_by=todo)

        return msg

添加记忆: 使用self.rc.memory.add(msg)添加记忆,并且msg必须是Message对象。

Notice: 角色通常需要记住它之前说过或做过什么,以便采取下一步行动。所以建议在复写act函数的逻辑时,建议将动作输出的消息添加到角色的内存中。

附录

1、react_mode(智能体的思维范式介绍)

概述: 接收到对环境的观察后,智能体会进行思考以及做出一些行为来应对,MetaGPT目前提供两种方式,即ReAct和By Order。

1-1、ReAct

ReAct: 先思考,后行动,直到Agent决定停止循环。每次思考(_think)时,角色会选择一种行为来回应观察,并且执行选择的行为在_act函数,而行为的输出结果将会是下一次思考的观察对象,LLM作为大脑,动态的选择行为去执行。

REACT: SYNERGIZING REASONING AND ACTING IN LANGUAGE MODELS: ReAct详细介绍可以参考我的另一篇文章:REACT: SYNERGIZING REASONING AND ACTING IN LANGUAGE MODELS【大模型的协同推理】

在这里插入图片描述

Notice: 如果你想要角色执行更多次思考-行动循环,那么你可以设置参数max_react_loop。实验证明,设置该参数非常有必要,在react的过程中,如果思考-行动循环少,往往会做出错误的决策,即少执行或者错误执行行为

self._set_react_mode(react_mode="react", max_react_loop=6)

1-2、By order

By order: 按照set_actions中设定的行为去依次执行。该情况适用于我们清楚Agent该依次执行哪些行为。

在这里插入图片描述

例如在目录2-4-2的案例中,我们就是顺序执行行为,先写代码,后执行代码。

class RunnableCoder(Role):
    name: str = "Alice"
    profile: str = "RunnableCoder"

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.set_actions([SimpleWriteCode, SimpleRunCode])
        self._set_react_mode(react_mode="by_order")

    async def _act(self) -> Message:
        ...

1-3、Plan and act

先拟定计划,之后使用计划去执行一系列动作:

在这里插入图片描述

参考文章:

《MetaGPT智能体开发入门》教程
Datawhale教程.
MetaGPT—GitHub官网
openAI研究主管文章
awesome-ai-agents——AI agent汇总
MetaGPT智能体入门——官方文档

LLM图形化界面:
川虎 Chat 🐯 Chuanhu Chat
chatgpt-KnowledgeBot


总结

好困好困😩

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1949324.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

mysql面试(六)

前言 本章节详细讲解了一下mysql执行计划相关的属性释义,以及不同sql所出现的不同效果 执行计划 一条查询语句经过mysql查询优化器的各种基于成本和各种规则优化之后,会生成一个所谓的 执行计划,这个执行计划展示了这条查询语句具体查询方…

Qt自定义MessageToast

效果&#xff1a; 文字长度自适应&#xff0c;自动居中到parent&#xff0c;会透明渐变消失。 CustomToast::MessageToast(QS("最多添加50张图片"),this);1. CustomToast.h #pragma once#include <QFrame>class CustomToast : public QFrame {Q_OBJECT pub…

广义线性模型(2)线性回归

线性回归算法应该是大多数人机器学习之路上的第一站&#xff0c;因为线性回归算法原理简单清晰&#xff0c;但却囊括了拟合、优化等等经典的机器学习思想。 说到线性回归&#xff0c;我们得先说说回归与分类、线性与非线性这些概念的区别。 一 分类与回归的区别 机器学习中的…

【虚拟机】Windows(x86)上部署ARM虚拟机(Ubuntu)

【虚拟机】Windows&#xff08;x86&#xff09;上部署ARM虚拟机&#xff08;Ubuntu&#xff09; 零、起因 最近在学嵌入式&#xff0c;这就不得不涉及ARM指令集&#xff0c;但是电脑是x86指令集的&#xff0c;用手机不太方便&#xff0c;买开发板又要等几天……&#xff0c;总…

商场导航系统:从电子地图到AR导航,提升顾客体验与运营效率的智能解决方案

商场是集娱乐、休闲、社交于一体的综合性消费空间&#xff0c;随着商场规模的不断扩大和布局的日益复杂&#xff0c;顾客在享受丰富选择的同时&#xff0c;也面临着寻路难、店铺曝光率低以及商场管理效率低下等挑战。商场导航系统作为提升购物体验的关键因素&#xff0c;其重要…

springcloud RocketMQ 客户端是怎么走到消费业务逻辑的 - debug step by step

springcloud RocketMQ &#xff0c;一个mq消息发送后&#xff0c;客户端是怎么一步步拿到消息去消费的&#xff1f;我们要从代码层面探究这个问题。 找的流程图&#xff0c;有待考究。 以下我们开始debug&#xff1a; 拉取数据的线程&#xff1a; PullMessageService.java 本…

【无标KaiwuDB CTO 魏可伟:差异化创新,面向行业的多模架构题】

2024年7月16日&#xff0c;KaiwuDB CTO 魏可伟受邀于 2024 可信数据库发展大会主论坛发表演讲《多模一库 —— KaiwuDB 的现代数据库架构探索》&#xff0c;以下是演讲精华实录。 多模数据库 是顺应时代发展与融合趋势的产物 数据模型最早始于网状模型和层次模型&#xff0c;…

删除的视频怎样才能恢复?详尽指南

在日常生活中&#xff0c;我们有时会不小心删除一些重要的视频文件&#xff0c;或者在整理存储空间时不慎丢失了珍贵的记忆片段。这时候&#xff0c;我们可以通过一些数据恢复工具和技巧&#xff0c;找回这些被删除的视频。本文将详细介绍几种常见且有效的视频恢复方法&#xf…

升腾c92安装ubuntu20.04 server(二)

一、本人使用大白菜制作的U盘安装ubuntu服务出现了如下错误 通过晚上查询知道&#xff0c;出现unable to find a medium containing a live file system 是因为U盘和升腾c92的u口不匹配导致&#xff0c;解决方案如下&#xff1a; 一、安装软碟通 在安装完软碟通之后&#xf…

git 版本回退-idea

1、选中项目&#xff0c;右键&#xff0c;打开 git历史提交记录 2、选中想要回退的版本&#xff0c;选择 hard&#xff08;不保留版本记录&#xff09; 3、最终选择强制提交&#xff08;必须强制&#xff09; OK&#xff0c;搞定

合作伙伴中心Partner Center中添加了Copilot预览版

目录 一、引言 二、Copilot 功能概述 2.1 Copilot 简介 2.2 Copilot 的核心功能 2.3 Copilot 的访问和使用 三、Copilot 的使用方法 3.1 Copilot 功能区域 3.2 Copilot 使用示例 3.2.1 编写有效提示 3.2.2 使用反馈循环 四、负责任的人工智能 4.1 Copilot 结果的可…

Docker 安全及日志管理(包含SSL证书)

目录 一、Docker 存在的安全问题 二、Docker 架构缺陷与安全机制 三、Docker 安全基线标准 四、容器相关的常用安全配置方法 五、限制流量流向 六、镜像安全 七、DockerClient 端与 DockerDaemon 的通信安全 https的单向认证流程 https的双向认证流程 八、DockerClie…

实时同步:使用 Canal 和 Kafka 解决 MySQL 与缓存的数据一致性问题

目录 1. 准备工作 2. 将需要缓存的数据存储 Redis 3. 监听 canal 存储在 Kafka Topic 中数据 1. 准备工作 1. 开启并配置MySQL的 BinLog&#xff08;MySQL 8.0 默认开启&#xff09; 修改配置&#xff1a;C:\ProgramData\MySQL\MySQL Server 8.0\my.ini log-bin"HELO…

STM32——GPIO(LED闪烁)

一、什么是GPIO&#xff1f; GPIO&#xff08;通用输入输出接口&#xff09;&#xff1a; 1.GPIO 功能概述 GPIO 是通用输入/输出&#xff08;General Purpose I/O&#xff09;的简称&#xff0c;既能当输入口使用&#xff0c;又能当输出口使用。端口&#xff0c;就是元器件…

HTML常用的转义字符——怎么在网页中写“<div></div>”?

一、问题描述 如果需要在网页中写“<div></div>”怎么办呢&#xff1f; 使用转义字符 如果直接写“<div></div>”&#xff0c;编译器会把它翻译为块&#xff0c;类似的&#xff0c;其他的标签也是如此&#xff0c;所以如果要在网页中写类似于“<div…

docker 构建 mongodb

最近需要在虚拟机上构建搭建mongo的docker容器&#xff0c;搞了半天老有错&#xff0c;归其原因&#xff0c;是因为现在最新的mango镜像的启动方式发生了变化&#xff0c;故此现在好多帖子&#xff0c;就是错的。 ok&#xff0c;话不多说&#xff1a; # 拉取最新镜像&#xf…

SpringBoot 使用easypoi.excel实现导入解析数据,并结合数据字典实现对数据的校验

在日常开发工作中避免不了的功能需求&#xff1a;导入Excel文件&#xff0c;然而导入文件流操作、对数据的校验有是件麻烦事&#xff0c;自从接触了easypoi后&#xff0c;觉得封装的很好&#xff0c;很简洁。 使用的主要依赖如下&#xff1a; <dependency><groupId&…

Unity3D结合AI教育大模型 开发AI教师 AI外教 AI英语教师案例

自2022年底ChatGPT引爆全球之后&#xff0c;大模型技术便迎来了一段崭新的快速发展期&#xff0c;由其在GPT4.0发布后&#xff0c;AI与教育领域结合产品研发、已成为教育AI科技竞争的新高地、未来产业的新赛道、经济发展的新引擎和新产品的诞生地。 据不完全统计&#xff0c;目…

代码随想录 day 22 回溯

第七章 回溯算法part01 理论基础 其实在讲解二叉树的时候&#xff0c;就给大家介绍过回溯&#xff0c;这次正式开启回溯算法&#xff0c;大家可以先看视频&#xff0c;对回溯算法有一个整体的了解。 题目链接/文章讲解&#xff1a;https://programmercarl.com/%E5%9B%9E%E6%B…

pdf格式过大怎么样变小 pdf文件过大如何缩小上传 超实用的简单方法

面对体积庞大的 PDF 文件&#xff0c;我们常常需要寻找有效的方法来缩减其大小。这不仅能够优化存储空间&#xff0c;还能提升文件的传输和打开速度。PDF文件以其稳定性和跨平台兼容性成为工作和学习中的重要文件格式。然而&#xff0c;当我们需要通过邮件发送或上传大文件时&a…