Pytorch使用教学7-张量的广播

news2024/11/18 13:54:11

在这里插入图片描述

PyTorch中的张量具有和NumPy相同的广播特性,允许不同形状的张量之间进行计算。

广播的实质特性,其实是低维向量映射到高维之后,相同位置再进行相加。我们重点要学会的就是低维向量如何向高维向量进行映射

相同形状的张量计算

虽然我们觉得不同形状之间的张量计算才是广播,但其实相同形状的张量计算本质上也是广播。

t1 = torch.arange(3)
t1
# tensor([0, 1, 2])

# 对应位置元素相加
t1 + t1
# tensor([0, 2, 4])

与Python对比

如果两个list相加,结果是什么?

a = [0, 1, 2]
a + a
# [0, 1, 2, 0, 1, 2]

不同形状的张量计算

广播的特性是不同形状的张量进行计算时,一个或多个张量通过隐式转化成相同形状的两个张量,从而完成计算。

但并非任意两个不同形状的张量都能进行广播,因此我们要掌握广播隐式转化的核心依据。

2.1 标量和任意形状的张量

标量(零维张量)可以和任意形状的张量进行计算,计算过程就是标量和张量的每一个元素进行计算。

# 标量与一维向量
t1 = torch.arange(3)
# tensor([0, 1, 2])

t1 + 1 # 等效于t1 + torch.tensor(1)
# tensor([1, 2, 3])
# 标量与二维向量
t2 = torch.zeros((3, 4))
t2 + 1 # 等效于t2 + torch.tensor(1)
# tensor([[1., 1., 1., 1.],
#         [1., 1., 1., 1.],
#         [1., 1., 1., 1.]])

2.2 相同维度,不同形状张量之间的计算

我们以t2为例来探讨相同维度、不同形状的张量之间的广播规则。

t2 = torch.zeros(3, 4)
t2
# tensor([[0., 0., 0., 0.],
#         [0., 0., 0., 0.],
#         [0., 0., 0., 0.]])

t21 = torch.ones(1, 4)
t21
# tensor([[1., 1., 1., 1.]])

它们都是二维矩阵,t21的形状是1×4t2的形状是3×4,它们在第一个分量上取值不同,但该分量上t21取值为1,因此可以进行广播计算:

t2 + t21
# tensor([[1., 1., 1., 1.],
#        [1., 1., 1., 1.],
#        [1., 1., 1., 1.]])

而t2和t21的实际计算过程如下:

在这里插入图片描述

可理解为t21的一行与t2的三行分别进行了相加。而底层原理为t21的形状由1×4拓展成了t23×4,然后二者对应位置进行了相加。

t22 = torch.ones(3, 1)
t22
# tensor([[1.],
#         [1.],
#         [1.]])

t2 + t22
# tensor([[1., 1., 1., 1.],
#         [1., 1., 1., 1.],
#         [1., 1., 1., 1.]])

同理,t22+t2t21+t2结果相同。如果矩阵的两个维度都不相同呢?

t23 = torch.arange(3).reshape(3, 1)
t23
# tensor([[0],
#         [1],
#         [2]])

t24 = torch.arange(3).reshape(1, 3)
# tensor([[0, 1, 2]])

t23 + t24
# tensor([[0, 1, 2],
#         [1, 2, 3],
#         [2, 3, 4]])

此时,t23的形状是3×1,而t24的形状是1×3,二者的形状在两个份量上均不同,但都有1存在,因此可以广播:

在这里插入图片描述

如果两个张量的维度对应数不同且都不为1,那么就无法广播。

t25 = torch.ones(2, 4)
# t2的shape为3×4
t2 + t25
# RuntimeError

高维张量的广播

高维张量的广播原理与低维张量的广播原理一致:

t3 = torch.zeros(2, 3, 4)
t3
# tensor([[[0., 0., 0., 0.],
#          [0., 0., 0., 0.],
#          [0., 0., 0., 0.]],

#         [[0., 0., 0., 0.],
#         [0., 0., 0., 0.],
#         [0., 0., 0., 0.]]])

t31 = torch.ones(2, 3, 1)
t31
# tensor([[[1.],
#          [1.],
#          [1.]],

#         [[1.],
#          [1.],
#          [1.]]])

t3+t31
# tensor([[[1., 1., 1., 1.],
#          [1., 1., 1., 1.],
#          [1., 1., 1., 1.]],

#         [[1., 1., 1., 1.],
#          [1., 1., 1., 1.],
#          [1., 1., 1., 1.]]])

总结

维度相同时,如果对应分量不同,但有一个为1,就可以广播。

不同维度计算中的广播

对于不同维度的张量,我们首先可以将低维的张量升维,然后依据相同维度不同形状的张量广播规则进行广播。

低维向量的升维也非常简单,只需将更高维度方向的形状填充为1即可:

# 创建一个二维向量
t2 = torch.arange(4).reshape(2, 2)
t2
# tensor([[0, 1],
#         [2, 3]])

# 创建一个三维向量
t3 = torch.zeros(3, 2, 2)
t3

t2 + t3
# tensor([[[0., 1.],
#          [2., 3.]],

#         [[0., 1.],
#          [2., 3.]],

#         [[0., 1.],
#          [2., 3.]]])

t3t2的相加,就相当于1×2×23×2×2的两个张量进行计算,广播规则与低维张量一致。

相信看完本节,你已经充分掌握了广播机制的运算规则:

  • 维度相同时,如果对应分量不同,但有一个为1,就可以广播
  • 维度不同时,只需将低维向量的更高维度方向的形状填充为1即可

Pytorch张量操作大全:

Pytorch使用教学1-Tensor的创建
Pytorch使用教学2-Tensor的维度
Pytorch使用教学3-特殊张量的创建与类型转化
Pytorch使用教学4-张量的索引
Pytorch使用教学5-视图view与reshape的区别
Pytorch使用教学6-张量的分割与合并
Pytorch使用教学7-张量的广播
Pytorch使用教学8-张量的科学运算
Pytorch使用教学9-张量的线性代数运算
Pytorch使用教学10-张量操作方法大总结

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1949151.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

自动驾驶(八十八)---------通讯之SOMEIP

1. 什么是SOME/IP 服务导向架构(SOA,Service-Oriented Architecture)是一种设计软件系统的方法,强调通过可重用的服务来实现系统的松散耦合。每个服务是独立的功能单元,可以被不同的应用程序使用。这些服务通过标准化的…

新版海螺影视主题模板M3.1全解密版本多功能苹果CMSv10后台自适应主题

苹果CMS2022新版海螺影视主题M3.1版本,这个主题我挺喜欢的,之前也有朋友给我提供过原版主题,一直想要破解但是后来找了几个SG11解密的大哥都表示解密需要大几百大洋,所以一直被搁置了。这个版本是完全解密的,无需SG11加…

ADG901介绍

目录 一、特性二、增强产品特性三、应用四、一般描述五、极低功耗六、引脚描述七、尺寸参数八、电路连接 一、特性 宽带开关:-3 dB 在 4.5 GHz吸收型开关高关断隔离度:在 1 GHz 时为 38 dB低插入损耗:在 1 GHz 时为 0.8 dB单一 1.65 V 至 2.…

QT5:嵌入式linux开发板调用键盘

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录​​​​​​​ 前言 一、Buildroot构建QT环境 1.1 构建环境 1.2 检查qtvirtualkeyboard库 二、测试过程 2.1 直接调用qtvirtualkeyboard 1.测试代码 2.测试效果 2.2 运行…

【Unity国产化信创平台】麒麟银河V10系统虚拟机创建

目录 一、麒麟V10系统镜像下载 二、虚拟机创建流程 三、麒麟银河系统安装流程 一、麒麟V10系统镜像下载 https://www.kylinos.cn/# 官方访问还是会有问题,如果有需要麒麟银河Kylin系统V10的镜像文件,可以留下邮箱或者私信博主获取。 二、虚拟机创…

时间序列分析方法之 -- 移动平均(Moving Average)

目录 原理 适用情况 Python 示例代码 结论 原理 移动平均(Moving Average, MA)是一种常用的时间序列分析和数据平滑方法。其基本思想是通过取时间序列中某个时间窗口内数据的平均值来消除短期波动,从而更好地揭示数据的长期趋势。根据取平…

【Tomcat】Mac M3 Pro安装Tomcat7

文章目录 下载配置环境变量修改权限启动和关闭 下载 官网:https://tomcat.apache.org/ cd ~/Library tar -zxvf /Users/用户名/Downloads/apache-tomcat-7.0.99.tar.gz mv apache-tomcat-7.0.99 ~/Library/tomcat配置环境变量 vi ~/.bash_profileexport TOMCAT…

UWA Gears正式上线,助力移动平台性能优化

亲爱的开发者朋友们, 我们非常激动地向大家宣布,UWA最新的无SDK性能分析工具 - UWA Gears,现已正式发布!无论您使用的是哪种开发引擎,这款工具都能轻松应对,为您的项目保驾护航。更令人心动的是&#xff0c…

vue3【实战】可编辑的脱敏信息

<script lang"ts" setup> import { ref, onMounted } from "vue"; let real_name ref("朝阳");let name ref("");onMounted(() > {name.value des_name(real_name.value); });function focusing() {name.value real_name…

spring —— 事务管理器

事务管理主要针对数据源进行操作&#xff1a;在数据库方面&#xff0c;通过 TransactionManager 事务管理器进行管理&#xff0c;表明一旦出现错误&#xff0c;该数据源的所有数据全部复原。那么数据库如何判断是否发生了错误呢&#xff1f;这就需要在代码方面&#xff0c;通过…

FPGA开发——实现流水灯的设计

一、概述 众所周知&#xff0c;在我们学习任何一款硬件&#xff0c;不管是单片机MCU&#xff0c;DSP以及其他的一系列硬件在内的最开始接触的都是LED流水灯的实现&#xff0c;这就和我们在学习编程时的输出“Hello World”一样&#xff0c;我们在学习FPGA的过程当中也是要从LE…

Webshell管理工具:AntSword(中国蚁剑)

中国蚁剑是一款开源的跨平台网站管理工具&#xff0c;它主要面向于合法授权的渗透测试安全人员以及进行常规操作的网站管理员。 通俗的讲&#xff1a;中国蚁剑是 一 款比菜刀还牛的shell控制端软件。 一、中国蚁剑下载 1. 下载 AntSword-Loader https://github.com/AntSwordP…

MySQL窗口函数详解

MySQL窗口函数详解 MySQL从8.0版本开始引入了窗口函数&#xff0c;这是一个强大的特性&#xff0c;可以大大简化复杂的数据分析任务。本文将详细介绍MySQL窗口函数的概念、语法和常见用法&#xff0c;并结合实际应用场景进行说明。 什么是窗口函数? 窗口函数是一种能够对结…

单元测试的最佳实践

整体架构 合适的架构可以提升可测试性。比如菱形对称架构的模块化和解耦特性使得系统各个部分可以独立进行单元测试。这不仅提高了测试的效率&#xff0c;还能够减少测试的依赖性&#xff0c;提高测试准确性。 代码设计 代码设计和可测试性有密切关联。强烈建议一个方法的代码行…

Java面试八股之什么是spring boot starter

什么是spring boot starter Spring Boot Starter是Spring Boot项目中的一个重要概念。它是一种依赖管理机制&#xff0c;用于简化Maven或Gradle配置文件中的依赖项声明。Spring Boot Starter提供了一组预定义的依赖关系&#xff0c;这些依赖关系被封装在一个单一的包中&#x…

CC-Link转Profinet协议网关功能与配置详解

怎么样才能把CC-Link和Profinet网络连接起来呢?这几天有几个朋友问到了这个问题&#xff0c;作者在这里统一为大家详细说明一下。其实有一个设备可以很轻松地解决这个问题&#xff0c;名为JM-PN-CCLK&#xff0c;下面是详细介绍。 一&#xff0c;产品主要功能 1、捷米特JM-P…

go语言学习文档精简版

Go语言是一门开源的编程语言&#xff0c;目的在于降低构建简单、可靠、高效软件的门槛。Go平衡了底层系统语言的能力&#xff0c;以及在现代语言中所见到的高级特性。 你好&#xff0c;Go package main // 程序组织成包import "fmt" // fmt包用于格式化输出数据// …

【C++_list】理解链表!实现链表!成为链表!!

List 1. list的介绍及使用2. list的模拟1&#xff09;大致了解List框架2&#xff09;模拟实现List操作3&#xff09;关于const迭代器的问题&#xff08;重点&#xff09;4&#xff09;关于链表拷贝的问题 1. list的介绍及使用 下面会给出list的文档介绍官网&#xff0c;也是本博…

Vue常用指令及其生命周期

作者&#xff1a;CSDN-PleaSure乐事 欢迎大家阅读我的博客 希望大家喜欢 目录 1.常用指令 1.1 v-bind 1.2 v-model 注意事项 1.3 v-on 注意事项 1.4 v-if / v-else-if / v-else 1.5 v-show 1.6 v-for 无索引 有索引 生命周期 定义 流程 1.常用指令 Vue当中的指令…

【OpenCV C++20 学习笔记】基本图像容器——Mat

【OpenCV C20 学习笔记】基本图像容器——Mat 概述Mat内部结构引用计数机制颜色数据格式 显式创建Mat对象使用cv::Mat::Mat构造函数矩阵的数据项 使用数组进行初始化的构造函数cv::Mat::create函数MATLAB风格的初始化小型矩阵通过复制创建Mat对象 Mat对象的输出其他普通数据项的…