ResNet简单介绍+Pytroch代码实现

news2024/11/19 11:19:58

文章目录

  • 一、背景介绍
  • 二、ResNet网络结构
        • 1.ResNet34结构示意图
        • 2.不同层数的ResNet采用的Block结构。
        • 3.不同层数的ResNet网络结构示意图
        • 4.实验结果
  • 三、Pytroch代码
        • 1.代码简单介绍
        • 2. 常见ResNet网络代码汇总
  • 四、参考文献

一、背景介绍

问题: 当网络层数越来越深时,模型性能不如层数相对较少的模型。这将不利于构建更深的模型。现阶段有采用BatchNorm层来缓解梯度消失或者爆炸,但效果并不明显。训练集上就出现了退化情况,故不是过拟合导致。

在这里插入图片描述
方法:

按道理,给网络叠加更多层,浅层网络的解空间是包含在深层网络的解空间中的,深层网络的解空间至少存在不差于浅层网络的解,因为只需将增加的层变成恒等映射,其他层的权重原封不动copy浅层网络,就可以获得与浅层网络同样的性能。更好的解明明存在,为什么找不到?找到的反而是更差的解?

显然,这是个优化问题,反映出结构相似的模型,其优化难度是不一样的,且难度的增长并不是线性的,越深的模型越难以优化。
出现该问题可能有两种解决方法一种是调整求解方法,比如更好的初始化、更好的梯度下降算法等;另一种是调整模型结构,让模型更易于优化——改变模型结构实际上是改变了error surface的形态。

这里作者采用了第二种解决方法。如下图所示,作者认为采用这种结构能够便于网络进行优化。
在这里插入图片描述

Instead of hoping each few stacked layers directly fit a desired underlying mapping, we explicitly let these layers fit a residual mapping. Formally, denoting the desired underlying mapping as H(x), we let the stacked nonlinear layers fit another mapping of F(x):=H(x)−x. The original mapping is recast into F(x)+x. We hypothesize that it is easier to optimize the residual mapping than to optimize the original, unreferenced mapping. To the extreme, if an identity mapping were optimal, it would be easier to push the residual to zero than to fit an identity mapping by a stack of nonlinear layers.
我们不是希望每几个堆叠层直接拟合所需的底层映射,而是明确让这些层拟合残差映射。 形式上,将所需的底层映射表示为 H(x),我们让堆叠的非线性层拟合 F(x):=H(x)−x 的另一个映射。 原始映射被重铸为 F(x)+x。 我们假设优化残差映射比优化原始的、未引用的映射更容易。 在极端情况下,如果恒等映射是最优的,则将残差推到零比通过一堆非线性层拟合恒等映射更容易。

二、ResNet网络结构

1.ResNet34结构示意图

在这里插入图片描述

2.不同层数的ResNet采用的Block结构。

在原论文中,残差路径可以大致分成2种,一种没有bottleneck结构,如下图左所示,称之为“basic block”,另一种有bottleneck结构,即下图右中的1×1 卷积层,用于先降维再升维,主要出于降低计算复杂度的现实考虑,称之为“bottleneck block”。
在这里插入图片描述
shortcut路径大致也可以分成2种,取决于残差路径是否改变了feature map数量和尺寸,一种是将输入x原封不动地输出,另一种则需要经过1×1卷积来升维 or/and 降采样,主要作用是将输出与F(x)路径的输出保持shape一致,对网络性能的提升并不明显,两种结构如下图所示。
在这里插入图片描述

3.不同层数的ResNet网络结构示意图

在这里插入图片描述

4.实验结果

在这里插入图片描述

三、Pytroch代码

1.代码简单介绍

ResNet根据网络层数不同有着两种卷积模块,如下图。
在这里插入图片描述
这两个模块代码如下,其中downsample指的是shortcut时可能会遇到输入维度或者大小不一样时需要改变输入维度或者大小(通常使用1X1卷积)。


def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=dilation, groups=groups, bias=False, dilation=dilation)


def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)

class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
                 base_width=64, dilation=1, norm_layer=None):
        super(BasicBlock, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if groups != 1 or base_width != 64:
            raise ValueError('BasicBlock only supports groups=1 and base_width=64')
        if dilation > 1:
            dilation = 1
            # raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = norm_layer(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = norm_layer(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
    # while original implementation places the stride at the first 1x1 convolution(self.conv1)
    # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
    # This variant is also known as ResNet V1.5 and improves accuracy according to
    # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.

    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
                 base_width=64, dilation=1, norm_layer=None):
        super(Bottleneck, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        width = int(planes * (base_width / 64.)) * groups
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv1x1(inplanes, width)
        self.bn1 = norm_layer(width)
        self.conv2 = conv3x3(width, width, stride, groups, dilation)
        self.bn2 = norm_layer(width)
        self.conv3 = conv1x1(width, planes * self.expansion)
        self.bn3 = norm_layer(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out

2. 常见ResNet网络代码汇总

代码来源:BIT_CD/models/resnet.py
在这里插入图片描述

import torch
import torch.nn as nn
from torchvision.models.utils import load_state_dict_from_url


__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
           'resnet152', 'resnext50_32x4d', 'resnext101_32x8d',
           'wide_resnet50_2', 'wide_resnet101_2']


model_urls = {
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
    'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
    'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
    'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
    'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
}


def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=dilation, groups=groups, bias=False, dilation=dilation)


def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
                 base_width=64, dilation=1, norm_layer=None):
        super(BasicBlock, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if groups != 1 or base_width != 64:
            raise ValueError('BasicBlock only supports groups=1 and base_width=64')
        if dilation > 1:
            dilation = 1
            # raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = norm_layer(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = norm_layer(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
    # while original implementation places the stride at the first 1x1 convolution(self.conv1)
    # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
    # This variant is also known as ResNet V1.5 and improves accuracy according to
    # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.

    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
                 base_width=64, dilation=1, norm_layer=None):
        super(Bottleneck, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        width = int(planes * (base_width / 64.)) * groups
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv1x1(inplanes, width)
        self.bn1 = norm_layer(width)
        self.conv2 = conv3x3(width, width, stride, groups, dilation)
        self.bn2 = norm_layer(width)
        self.conv3 = conv1x1(width, planes * self.expansion)
        self.bn3 = norm_layer(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class ResNet(nn.Module):

    def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
                 groups=1, width_per_group=64, replace_stride_with_dilation=None,
                 norm_layer=None, strides=None):
        super(ResNet, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        self._norm_layer = norm_layer

        self.strides = strides
        if self.strides is None:
            self.strides = [2, 2, 2, 2, 2]

        self.inplanes = 64
        self.dilation = 1
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
            raise ValueError("replace_stride_with_dilation should be None "
                             "or a 3-element tuple, got {}".format(replace_stride_with_dilation))
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=self.strides[0], padding=3,
                               bias=False)
        self.bn1 = norm_layer(self.inplanes)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=self.strides[1], padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=self.strides[2],
                                       dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(block, 256, layers[2], stride=self.strides[3],
                                       dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(block, 512, layers[3], stride=self.strides[4],
                                       dilate=replace_stride_with_dilation[2])
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)
                elif isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)

    def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
        norm_layer = self._norm_layer
        downsample = None
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                conv1x1(self.inplanes, planes * block.expansion, stride),
                norm_layer(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
                            self.base_width, previous_dilation, norm_layer))
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.inplanes, planes, groups=self.groups,
                                base_width=self.base_width, dilation=self.dilation,
                                norm_layer=norm_layer))

        return nn.Sequential(*layers)

    def _forward_impl(self, x):
        # See note [TorchScript super()]
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)

        return x

    def forward(self, x):
        return self._forward_impl(x)


def _resnet(arch, block, layers, pretrained, progress, **kwargs):
    model = ResNet(block, layers, **kwargs)
    if pretrained:
        state_dict = load_state_dict_from_url(model_urls[arch],
                                              progress=progress)
        model.load_state_dict(state_dict)
    return model


def resnet18(pretrained=False, progress=True, **kwargs):
    r"""ResNet-18 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress,
                   **kwargs)


def resnet34(pretrained=False, progress=True, **kwargs):
    r"""ResNet-34 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress,
                   **kwargs)


def resnet50(pretrained=False, progress=True, **kwargs):
    r"""ResNet-50 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress,
                   **kwargs)


def resnet101(pretrained=False, progress=True, **kwargs):
    r"""ResNet-101 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress,
                   **kwargs)


def resnet152(pretrained=False, progress=True, **kwargs):
    r"""ResNet-152 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress,
                   **kwargs)


def resnext50_32x4d(pretrained=False, progress=True, **kwargs):
    r"""ResNeXt-50 32x4d model from
    `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    kwargs['groups'] = 32
    kwargs['width_per_group'] = 4
    return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3],
                   pretrained, progress, **kwargs)


def resnext101_32x8d(pretrained=False, progress=True, **kwargs):
    r"""ResNeXt-101 32x8d model from
    `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    kwargs['groups'] = 32
    kwargs['width_per_group'] = 8
    return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3],
                   pretrained, progress, **kwargs)


def wide_resnet50_2(pretrained=False, progress=True, **kwargs):
    r"""Wide ResNet-50-2 model from
    `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_

    The model is the same as ResNet except for the bottleneck number of channels
    which is twice larger in every block. The number of channels in outer 1x1
    convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
    channels, and in Wide ResNet-50-2 has 2048-1024-2048.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    kwargs['width_per_group'] = 64 * 2
    return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3],
                   pretrained, progress, **kwargs)


def wide_resnet101_2(pretrained=False, progress=True, **kwargs):
    r"""Wide ResNet-101-2 model from
    `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_

    The model is the same as ResNet except for the bottleneck number of channels
    which is twice larger in every block. The number of channels in outer 1x1
    convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
    channels, and in Wide ResNet-50-2 has 2048-1024-2048.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    kwargs['width_per_group'] = 64 * 2
    return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3],
                   pretrained, progress, **kwargs)

四、参考文献

  1. ResNet详解与分析

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/194837.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Vulkan 编程指南记录

1 创建Vulkan instance 利用CreateInfo结构体指定硬件驱动需要使用的程序信息&#xff0c;这些信息可能会被作为驱动程序的优化依据指定程序需要使用的全局扩展。比如和窗口系统交互的扩展&#xff08;通过glfw库的接口获取&#xff09;。可以通过vkEnumerateInstanceExtensio…

一篇文章全知全能SpringBoot Bean的生命周期

系列文章&#xff1a;https://gamwatcher.blog.csdn.net/article/details/124603278这篇文章也是计划了蛮久的了&#xff0c;一直没写&#xff0c;正所谓大道行思&#xff0c;取则行远&#xff0c;总结也是学习的一种方式。&#x1f648;记得看目录哦1、关于spring1.1 什么是sp…

Spring Security在前端后端分离项目中的使用

Spring Security 是 Spring 家族中的一个安全管理框架&#xff0c;可以和Spring Boot项目很方便的集成。Spring Security框架的两大核心功能&#xff1a;认证和授权 认证&#xff1a; 验证当前访问系统的是不是本系统的用户&#xff0c;并且要确认具体是哪个用户。简单的理解就…

全网最详细的mybatis plus 条件构造器queryWrapper学习,比如and(),eq(),or(),like(),between(),orderByAsc()等方法以及分页操作

文章目录1. 引言2. 结构关系3. 环境配置3.1 引入jar包3.2 创建数据源3.2 创建User实体类3.4 创建UserMapper类3.5 创建UserService类4. 操作演示5. 注意事项1. 引言 mybatis大家都有使用过&#xff0c;既面向对象又灵活可配。不友好的地方是&#xff0c;会随着使用出现大量xml…

C++之缺省参数以及C++的输入输出

文章目录前言一、缺省参数的定义二、缺省参数的分类1.全缺省参数2.半缺省参数三、缺省参数的注意事项1. 半缺省参数必须从右往左依次来给出&#xff0c;不能间接给缺省值2. 缺省参数不能在函数声明和定义中同时出现3. 缺省值必须是常量或者全局变量4. C语言不支持四、C的输入&a…

考虑实时市场联动的电力零售商鲁棒定价策略(Matlab代码实现)

&#x1f468;‍&#x1f393;个人主页&#xff1a;研学社的博客 &#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜…

JavaEE初阶第三课:网络初识

欢迎来到javaee初阶的第三课&#xff0c;这节课我会带大家来初识网络 荔枝目录1.认识IP和端口1.1 IP1.2端口2.认识协议2.1协议分层&#xff08;TCP/IP协议&#xff09;2.2封装与分用2.3两台主机之间的网络通信流程&#xff08;非同一网段&#xff09;3.其他常见名词 解释3.1客户…

电脑老是蓝屏是什么原因?怎么修复蓝屏

电脑老是蓝屏是什么原因&#xff1f;其实电脑蓝屏的原因是有很多种的&#xff0c;每个地方出问题都会导致电脑蓝屏&#xff0c;所以我们要想知道蓝屏的原因&#xff0c;那么就需要一步步的去检测&#xff0c;去排除掉一些可能&#xff0c;才能得出正确的蓝屏原因的答案。 一.什…

MATLAB 数组计算

✅作者简介&#xff1a;人工智能专业本科在读&#xff0c;喜欢计算机与编程&#xff0c;写博客记录自己的学习历程。 &#x1f34e;个人主页&#xff1a;小嗷犬的个人主页 &#x1f34a;个人网站&#xff1a;小嗷犬的技术小站 &#x1f96d;个人信条&#xff1a;为天地立心&…

Java字典注解的简单实现(AOP)

需求来源 在开发过程中&#xff0c;必不可少会用到字典&#xff0c;例如&#xff0c;数据库字段性别字段可能是这样的&#xff1a;1&#xff1a;男&#xff1b;2&#xff1a;女&#xff0c;在数据存储的时候用1和2&#xff0c;但是在前端展示的时候需要使用男和女&#xff0c;…

有没有人像我一样每次面对sql都很痛苦

今天又操作了一遍sql&#xff0c;这世界上有没有人像我一样&#xff0c;每一次面对mysql都是一次痛苦的经历。 不知道别人怎么想&#xff0c;反正我是这样的。使用mysql从来没有让我快乐过。在数据库里面&#xff0c;最喜欢mongo&#xff0c;当然我也只会mongo。但是每一次使用…

NL-meals、BM3D

常用的高斯滤波或者均值滤波相对都比较简单&#xff0c;即每个窗口的滤波核都是一样的。稍微复杂一些保边滤波如&#xff0c;双边滤波和导向图滤波等。这里介绍几种ffmpeg里面包含的相对比较复杂的滤波算法。计算量不可谓不小。可以通过ffmpeg查看源码实现过程&#xff0c;这里…

RHCE(防火墙)

文章目录一、什么是防火墙二、iptables三、firewalld四、作业一、什么是防火墙 防火墙&#xff1a;防火墙是位于内部网络和外部网络之间的屏障&#xff0c;它按照系统管理员预先定义的规则来控制数据包的进出 防火墙可以分为硬件防火墙和软件防火墙。硬件防火墙是由厂商设计好的…

LongAdder/LongAccumulator类分析

一、LongAdder简介 1.下图是JDK-API文档的的截图信息 我们可以得知这两个类都是1.8开始提供的&#xff0c;并且都具有顶级的并发性。这两类的区别点主要在于LongAdder初始值为0&#xff0c;只能做累加操作&#xff0c;而LongAccumulator可以完成一些复杂的计算&#xff0c;本…

软件设计师考试整理-0-前言

1. 整理初衷 2022年下半年的软考成绩出来了&#xff0c;查了一下&#xff0c;上午58分&#xff0c;下午61分&#xff0c;虽然不高&#xff0c;但是也过了&#xff0c;还是值得开心的&#xff0c;毕竟在最初报考的时候&#xff0c;会的知识点寥寥无几。 先解释下为什么我会报考…

富勒烯C60,131159-39-2,水溶性富勒烯,CARBON C60

产品描述&#xff1a;富勒烯C60与金刚石、石墨是碳的三种同素异形体&#xff0c;富勒烯分子是一种由60个碳原子结合形成的稳定分子&#xff0c;它具有60个顶点和32个面&#xff0c;其中12个为正五边形&#xff0c;20个为正六边形&#xff0c;它形似足球&#xff0c;所以又称为富…

OpenMMLab AI实战营Day2 图像分类

目录 一、图像分类 二、卷积神经网络 三、超越ResNet的图像分类模型 1、神经结构搜索 2、Transformer 3、ConvNext 四、轻量化神经网络 五、Vision Transformer 六、模型学习 七、学习率与优化器调整策略 八、数据增强 一、图像分类 图像分类&#xff1a;识别图像中…

网络骗局丨典型案例分析,大家一起来避雷!

作者&#xff1a;黑蛋因为疫情的困扰&#xff0c;总体经济都不是很好&#xff0c;春节前后&#xff0c;网络诈骗高发期&#xff0c;以下是几种典型案例&#xff0c;一起来看看。比较常见的有以下几种&#xff1a;1、网络购物骗局小红在某平台网购一件产品&#xff0c;几天后&am…

Nacos+Springcloud+mybatis-plus+oracle的整合

NacosSpringcloudmybatis-plusoracle的整合 1、项目结构 2、父类的依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance&q…

shell脚本基本使用

目录 1.是什么&#xff1f; 2.写法 3.shell脚本语法 3.1第一个shell脚本 3.2交互式shell脚本 3.3shell脚本的数值计算 3.4test命令 3.5中括号【】判断符 3.6默认变量 4.shell脚本条件判断 4.1 if fi 4.2 if then else 4.3 if elif else 4.4 case 5.shell脚本函数…