有监督学习基础

news2025/1/8 20:14:23

基本概念

给定输入有为(x,y),其中x表示学习特征,y表示输出,m表示输入总数,有监督学习旨在根据输入建立能够预测可能输出的模型,大致可以分为回归和分类两种,代表可能输出是无限的或是有限可能。

模型

线性回归模型
通过数据集建立回归模型,表现形式为根据数据点建立曲线,如y~=wx+b,用于预测无限可能的数字。
分类模型
少量可能输出的预测,比如图片内容识别,音频字符识别等情况。

基本训练过程为
训练集—学习算法—预测方法

成本函数J

用于衡量建立曲线与数据点的差异大小,即曲线的拟合程度,通过平均误差成本函数实现—
m是为了避免误差随着数据集增大而增大,而除2是为了后续化简,使程序整洁。

构建模型的目的是使成本函数J尽可能小,为了简化,暂时不考虑b。

梯度下降

wb使成本函数最小的方法,也是逐步确定拟合曲线的方法,将参数初始化为0,每次尝试使J减小的方向,可视化如下:
成本函数梯度下降
本质是通过切线找到三维图像的最低点,从任意点开始找wb使成本函数最小的方法如式:


上述两个迭代公式需同步计算,上述步骤不断重复直到收敛,可以实现成本函数不断向局部最小值更新,其中a又称学习率,用于控制上下坡的步幅。

线性回归

用向量分别表示输入x和参数wf(x)=w·x+b,特征多数据大时,传统计算方法耗时很长,故考虑采取其他技术解决。

矢量化

w=np.array([])x=np.array([])生成向量,但计算时不使用循环乘法,二十直接调用f=np.dot(w,x)+b实现点积运算,该方法快于for循环,使用并行硬件,执行快。

梯度下降

w由原有计算式带入可得新w的计算公式
相应的,b的新计算式为
新b的计算公式
这里求导平方的2就和成本函数J分母加的2抵消,使式子简洁。
另外还有法方程法可用,但该方法并不通用,只在这种场景下可以无需迭代求解wb,但梯度下降是通用的方法。

特征缩放

单个特征对J的影响很大时,会导致曲线变化太大,梯度下降来回跳动,无法找到极值点,如下图
单个值太大
此时我们可以选择缩放特性,使整体的特征值大致在同一范围内,使用除法或平均归一化方法。

判断收敛

通过学习曲线检查梯度下降是否收敛,如下图
学习曲线
可以看出随着迭代次数的上升成本函数不断下降并趋于一个固定值,此时可以声明其收敛,但该方法的难度在于确定一个阈值。

选择学习率

太小则计算步骤增多,太大则可能跨过极值点,导致计算永远达不到最小值,需要尝试绘图找到合适的值,在接近最小值后由于偏导变化,步子会自动变小,同样需要尝试根据学习曲线图像选择。
学习曲线2
如果学习曲线上下摆动,则可能是学习率的选择过于大了。

选择特征

可以根据需要创建新特性,如果曲线不能线性拟合,也可以使用特征多项式提高特征次数,获得拟合曲线,在该部分特征缩放显得尤其重要。

logistic回归

用于分类,拟合一条横S曲线,用于二进制的分类,具体公式如下,其中z=w·x+b0<g(z)<1
逻辑回归曲线
图像大致如下:
逻辑回归曲线
该模型输出一个范围0-1的数字,代表分类为1的概率,多用于广告推荐算法,输出概率需设置阈值判定,常见的为0.5,该阈值称为决策边界,也就是z为0时的取值。

损失函数

单个点的损失L表示为:

L(z,y)= -log(z) 	y=1
		-log(1-z)	y=0

具体含义为,当y=1,预测为真则无损,预测为0则损失极大,y=0相同,预测为1损失极大,预测为0无损,区间的损失用对数函数覆盖。
上述损失可以简化为:
简化损失函数
y=1y=0时带入都可化简为初始式子。

总的损失函数J是所有点损失集合的平均数,表示为:
分类损失函数

梯度下降

w梯度下降

b梯度下降

二者同样需要同时计算,与线性回归的区别只在f(x)上,一个是f=w·x+b,另一个是指数形式1/1+e^(w·x+b)

其他

矢量化,特征缩放,判断收敛等,都与线性回归相同。

正则化

拟合与数据不匹配,称为偏差,拟合符合数据,但变化太多不能适应新数据,称为方差,或过拟合,如下三图分别表示偏差,合格拟合和方差。
拟合示例
解决过拟合的方法有:
1,收集更多数据,更大的训练集可以限制函数,拟合出摆动没那么大的图像
2,减少特征,数据不足但特征过多,易过拟合
3,减少参数大小,惩罚所有特征,可以使函数更平滑,表示公式如图:
正则化成本函数

其中lambda>0,使用正则化成本函数的思想为使w尽可能小。

正则化线性回归梯度下降

原有成本函数梯度下降为:
线性回归w正则化梯度下降
线性回归b正则化梯度下降

正则化logistic回归梯度下降

逻辑回归w正则化梯度下降
逻辑回归b正则化梯度下降

总结

本章学习了监督学习的两种算法,回归和分类,分别用于处理预测无限可能的数字,和有限输出的类型,本质都是通过对已有的数据建立拟合模型来实现,区别在于拟合曲线不同,拟合模型内部通过成本函数来衡量预测结果,每次模型调整又借助梯度下降实现,三者统一完成模型的建立与调整,最后,通过正则化来解决过拟合。

总结的总结,有监督学习的要点:标签、拟合曲线、成本函数、梯度下降、正则化,另外与无监督学习的区别就在于训练集有标签,在特定领域和指定情况效果佳。

另外,正则化之前的函数中分母m2m应该提到最前并改为1/m,修改工作量大偷个小懒。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1945016.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vue 实战 tab标签页+el-card+流式布局+异步接口调用

<template><div><!-- 布局按钮 --><el-button click"dialogVisible true">布局配置查看</el-button><!-- 布局配置对话框 --><el-dialog :visible.sync"dialogVisible" title"布局配置查看" width"…

nature reviews genetics | 单细胞基因组eQTL发展历程

– https://doi.org/10.1038/s41576-023-00599-5 留意更多内容&#xff0c;欢迎关注微信公众号&#xff1a;组学之心 Single-cell genomics meets human genetics 单细胞基因组技术已经扩展到可以检测数千个个体的样本的程度。将大规模的单细胞信息与基因型数据相结合&#x…

STM32F103C8T6基于YMODEM协议的串口IAP升级实践

一.为什么要做IAP升级 1.不易拆卸的设备&#xff0c;可以使用IAP升级&#xff0c;方便用户升级固件 2.YMODEM协议是串口传输协议&#xff0c;传输速率较高&#xff0c;传输文件较大时&#xff0c;传输时间较短 3.不想给别人源代码&#xff0c;但是项目有bug&#xff0c;需要修…

【PLC】三菱FX3U下载程序通讯中断问题解决方法之一

博主最近买了一个三菱PLC FX3U&#xff0c;然后随意在GX Works中编写了一段带有子程序的程序&#xff0c;后来发现刷写程序过程中&#xff0c;会突然出现通讯中断的情况&#xff0c;然后切断PLC电源&#xff0c;变更COM口&#xff0c;重启PLC后&#xff0c;通讯才可以连接上&am…

鸿蒙OpenHarmony Native API【drawing_pen.h】 头文件

drawing_pen.h Overview Related Modules: [Drawing] Description: 文件中定义了与画笔相关的功能函数 Since: 8 Version: 1.0 Summary Enumerations Enumeration NameDescription[OH_Drawing_PenLineCapStyle] { [LINE_FLAT_CAP], [LINE_SQUARE_CAP], [LINE_ROUND_…

PMP考试难度大吗?

由于目前的PMP考试主要以新大纲为主&#xff0c;许多内容都已经发生了变化&#xff0c;因此学习新内容以适应这些变化仍然是非常必要的。 一、新版考试题量和答题时间有何变化&#xff1f; 题量由200道减少到180道&#xff0c;因此答题时间相对更充裕。 二、新版考试的整体难…

洛谷 P1035 [NOIP2002 普及组] 级数求和 题解

思路1&#xff08;68分&#xff0c;测3&#xff0c;测5TLE&#xff09; &#xff1a; #include<bits/stdc.h> using namespace std; int a[100005]; int main() {int k,i;cin >> k;for(i1;;i){double sum0;//要在这里初始化for(int j1;j<i;j){double s1*1.0/j;…

php接口返回的json字符串,json_decode()失败,原来是多了红点

问题&#xff1a; 调用某个接口返回的json&#xff0c;json_decode()失败&#xff0c;返回数据为null&#xff0c; echo json_last_error();返回错误码 4 经过多次调试发现&#xff1a;多出来一个红点&#xff0c;预览是看不到的。 解决&#xff1a;要去除BOM头部 $resul…

Pytorch transforms 的研究

绝对路径与相对路径差别 transforms的使用 from torchvision import transforms from PIL import Imageimg_path "dataset/train/bees/16838648_415acd9e3f.jpg" img Image.open(img_path) tensor_trans transforms.ToTensor() tensor_img tensor_trans(img) prin…

优选算法之二分查找(上)

目录 一、二分查找 1.题目链接&#xff1a;704. 二分查找 2.题目描述&#xff1a; 3.算法流程&#xff1a; 4.算法代码&#xff1a; 二、在排序数组中查找元素的第一个和最后一个位置 1.题目链接&#xff1a;34. 在排序数组中查找元素的第一个和最后一个位置 2.题目描述…

防爆智能手机如何助力电气行业保驾护航?

在电气行业的智能化转型浪潮中&#xff0c;防爆智能手机以其强大的数据处理能力、实时通讯功能及高度集成的安全特性&#xff0c;正成为保障电力网络稳定运行、预防安全隐患的得力助手。 防爆智能手机在电气行业中发挥着重要的保驾护航作用&#xff0c;主要体现在以下几个方面&…

【性能测试-登录时密码加密存储如何传参】

目的】 登录接口&#xff0c;密码加密传输&#xff0c;开发不做处理的情况下&#xff0c;密码如何加密传输 【方案】 使用前置处理器&#xff1a;JSR223 预处理程序&#xff0c;主要是在执行登录接口前将密码按照加密算法获得对应的加密密码&#xff0c;并传入接口 【说明】前…

天工Godwork AT 5.2.6 GodWork2D 2.1.5 GodWork EOS 2.1实景三维建模软件

天工Godwork AT 5.2.6/GodWork2D 2.1.5/GodWork EOS 2.1实景三维建模软件 获取安装包联系邮箱:2895356150qq.com 本介绍用于学习使用&#xff0c;如有侵权请您联系删除&#xff01; 1.自主研发的平差技术&#xff0c;平差模块不依赖PATB、Bingo等国外技术 2.采用特征匹配&…

系统架构师考点--设计模式

大家好。今天来总结一下设计模式的相关考点。这部分考点也有可能在论文中出现&#xff0c;这里总结的可能不够全面&#xff0c;大家自己可以翻一下教材好好了解一下。 架构模式&#xff1a;软件设计中的高层决策&#xff0c;例如C/S结构就属于架构模式&#xff0c;架构模式反…

【第5章】Spring Cloud之Nacos服务注册和服务发现

文章目录 前言一、提供者1. 引入依赖2.配置 Nacos Server 地址3. 开启服务注册 二、消费者1. 引入依赖2.配置 Nacos Server 地址3. 开启服务注册 三、服务列表四、服务发现1. 获取服务列表2. 测试2.1 获取所有服务2.2 根据服务名获取服务信息 五、更多配置项总结 前言 本节通过…

mysql对数据库的增删改

目录 DML语句&#xff1a; 增加数据&#xff08;insert语句&#xff09; 增加数据&#xff08;insert into select&#xff09; 修改数据&#xff08;update语句&#xff09; 【where 子句条件】 删除数据&#xff08;delete语句&#xff09; 删除数据&#xff08;trunca…

内网隧道——Earthworm(EW)

文章目录 一、EW介绍二、一层网络2.1 一层正向代理2.2 一层反向代理 三、两层网络3.1 二层正向代理3.2 二层反向代理 一、EW介绍 下载地址&#xff1a;EW 常用的命令格式&#xff1a; 参数作用Ssocksd正向代理Rcsock反向代理客户端Rssocks反向代理服务端Lcx_slave一侧通过反弹…

基于SpringBoot的矩形范围面时空分析-以震中附近历史地震为例

目录 前言 1、分析的必要性 2、分析的紧迫性 一、数据库物理模型及空间分析实现 1、数据库物理模型 2、空间数据库中的空间查询分析 二、Java后台程序开发 1、模型层设计 2、业务层的设计与实现 三、WebGIS功能设计与实现 1、同时展示4幅地图 2、初始化地图 3、展示…

算法日记day 18(二叉树的所有路径|左叶子之和)

一、二叉树的所有路径 题目&#xff1a; 给你一个二叉树的根节点 root &#xff0c;按 任意顺序 &#xff0c;返回所有从根节点到叶子节点的路径。 叶子节点 是指没有子节点的节点。 示例 1&#xff1a; 输入&#xff1a;root [1,2,3,null,5] 输出&#xff1a;["1->…

福州高校大学智能制造实验室数字孪生可视化系统平台建设项目验收

随着制造业的转型升级&#xff0c;智能制造已成为行业发展的重要趋势。福州高校大学智能制造实验室作为该领域的重要研究基地&#xff0c;积极响应国家发展战略&#xff0c;不断探索和创新智能制造技术。数字孪生技术作为智能制造领域的前沿技术&#xff0c;通过将物理世界的实…