网络结构-组件-AI(九)

news2024/11/25 22:48:44

深度学习网络组件

  • RNN
    • 公式讲解
    • 计算示意图讲解
  • CNN
    • 计算示意
  • Normalization(归一化层)
    • Normalization常见两种方式
  • Dropout层

RNN

循环神经网络(recurrent neural network)
主要思想: 即将整个序列划分成多个时间步,将每一个时间步的信息依次输入模型,同时将模型输出的结果传给下一个时间步。

说人话: 将一句话,划分为一个个的字或者词;然后将这句话拆分的字,一个个的按照顺序输入进行计,从第一个字开始计算的结果加入到第二个字的计算中,依次类推,最后一个字计算完成时,我们认为它包含了前面所有字的特征信息。

举例: “你个扑该!” 就会拆分成五份,先将“你”进行计算,得到结果,然后加入“个”,进行计算;最后计算完成“!”时,得到的值,我们认为已经包含前面整句话的特征语义了。

公式讲解

RNN的计算公式如下图:
在这里插入图片描述
释义:

1.tanh是激活函数
2.其中x是输入的值,t代表次数或者步数
3.h代表计算值,t-1代表前一次,即代表前一个输入的字符的计算值
4.所以公式中可以进行计算的权重参数即为:b、W、U

计算示意图讲解

在这里插入图片描述
如果输入的256维,要求输出为128维,我们分析各个部分的维度情况

1.由于将句子进行拆分了,所以每一个X肯定是:1x256
2.因为输出要求128维,所以U肯定是:256x128
3.h要能够和计算值相加,所以是:1x128
4.w要和h能够相乘得到128维结果,所以w:128x128
5.b要能够相加,则b: 1x128
通过上述的逻辑,我们就能够清楚的知道,模型的内部有多少可训练的权重参数

CNN

卷积神经网络(Convolutional Neural Network)
主要思想: 和CNN类似,对于图片或是视频类的数据,更多的是像素点,我们通过设定卷积核的大小,作为一个特征提取词,每次通过上下移动一步,将范围内的像素特征进行提取。

计算示意

如图:第一步
在这里插入图片描述
第二步:
在这里插入图片描述
释义

1.上面的图片中,黄色部分就是我们的卷积核
2.绿色就是我们的图片像素点位,转为数字表达的信息
3.红色就是我们提取处理的特征,池化的结果
4.其中黄色部分,每个点位相乘的下标数据,就是我们模型需要计算的权重,这个权重和图谱的对应点位进行相乘,结果相加就是我们提取的值
注意:上面介绍的是一种普通的卷积方法,卷积还要膨胀卷积等
注意2:卷积同样可以用于NLP,再NLP中卷积的移动方向只有上下两个

Normalization(归一化层)

释义: 对于神经网络模型,我们需要经过多层的计算,那么某一层的某个参数过大或者过小都会导致梯度的膨胀和消失;为了避免这个问题,我们使用Normalization将某一层的神经网络输出,给收缩到一个范围内,避免上述的问题

公式:
在这里插入图片描述

释义:

1.公式1表示对任意一层的输出进行求平均
2.公式2求该输出的方差
3.公式3通过方差、均值,可以将输出值分布收缩到一个小的范围
4.公式4中:β和γ需要学习的参数,Y才是归一化层的输出;目的是为了减少归一化所造成的数据中特征的损失

Normalization常见两种方式

如图:
在这里插入图片描述
释义:

1.左右两种normalization主要是对输出的向量的求平均和方差的方向不同,一个是batch样本之间;一个是样本内进行
2.batch normalization主要用于CV任务中,因为是归一化在样本间,图像我们考虑两张类似的图片存在一些相似性和关系
3.layer normalization主要是用于NLP任务中,求的是样本间的,因为我们认为,语言的差异较大,两句话间相似性小
注意:归一化层不是只有上述的操作,还有其他的类型,目的都一致,约束

Dropout层

作用: 减少过拟合
逻辑: 按照指定的概率,随机丢弃一些神经元,每一个神经元都按照这个概率去判断一下,要不要丢弃,即将对应位置值设为0;其余元素乘以1/(1-p)进行放大

案例说明: 有一个向量[1,2,3,4,5,6],经过p=0.5的dropout层,得到的结果可能为:[0,4,0,0,0,12]。

理解说明

1.强迫一个神经单元,和随机挑选出来的其他神经单元共同工作,消除减弱了神经元节点间的联合适应性,增强了泛化能力
2.可以看做是一种模型平均,由于每次随机忽略的隐层节点都不同,这样就使每次训练的网络都是不一样的,每次训练都可以单做一个“新”的模型

类比说明: 养了一群娃;目的是能够在社会上叱咤风云,为了避免在训练阶段,即读书阶段成为书呆子,让他们每个人都去跳崖,这个跳崖的死亡率(p)我们可以设置;嘎掉的娃,我们就把他们的高考成绩打0分;没有噶掉的就把分数进行1/(1-p)放大,奖励;这样就避免,其中某个孩子王的影响了,每一个娃都会是强者。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1938791.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

OrangePi AIpro 快速上手初体验

开发板开箱 1.1.包装 1.2.开发版 Orange Pi AIpro Orange Pi官网-香橙派(Orange Pi)开发板 1.3.引脚分布 1.4开发板资源简介 1CPU配备了4核64位ARM处理器,其中默认预留1个给AI处理器使用NPU集成了华为昇腾310BAI处理器,拥有4TF…

(二)原生js案例之数码时钟计时

原生js实现的数字时间上下切换显示时间的效果&#xff0c;有参考相关设计&#xff0c;思路比较难&#xff0c;代码其实很简单 效果 代码实现 必要的样式 <style>* {padding: 0;margin: 0;}.content{/* text-align: center; */display: flex;align-items: center;justif…

华为OD机试(C卷,200分)- 二叉树计算

题目描述 给出一个二叉树如下图所示&#xff1a; 请由该二叉树生成一个新的二叉树&#xff0c;它满足其树中的每个节点将包含原始树中的左子树和右子树的和。 左子树表示该节点左侧叶子节点为根节点的一颗新树&#xff1b;右子树表示该节点右侧叶子节点为根节点的一颗新树。…

笔记:Few-Shot Learning小样本分类问题 + 孪生网络 + 预训练与微调

内容摘自王老师的B站视频&#xff0c;大家还是尽量去看视频&#xff0c;老师讲的特别好&#xff0c;不到一小时的时间就缕清了小样本学习的基础知识点~Few-Shot Learning (1/3): 基本概念_哔哩哔哩_bilibili Few-Shot Learning&#xff08;小样本分类&#xff09; 假设现在每类…

【Linux】基础I/O——动静态库的制作

我想把我写的头文件和源文件给别人用 1.把源代码直接给他2.把我们的源代码想办法打包为库 1.制作静态库 1.1.制作静态库的过程 我们先看看怎么制作静态库的&#xff01; makefile 所谓制作静态库 需要将所有的.c源文件都编译为(.o)目标文件。使用ar指令将所有目标文件打包…

Linux应用——网络基础

一、网络结构模型 1.1C/S结构 C/S结构——服务器与客户机&#xff1b; CS结构通常采用两层结构&#xff0c;服务器负责数据的管理&#xff0c;客户机负责完成与用户的交互任务。客户机是因特网上访问别人信息的机器&#xff0c;服务器则是提供信息供人访问的计算机。 例如&…

[2019红帽杯]Snake

[2019红帽杯]Snake-CSDN博客 unity的题 下载下来看看是什么类型就是 这道题就是贪吃蛇 unity无脑找Assembly 用dnspy打开 一般就在这里慢慢找 但是你可以发现没有任何的信息 这里外接库 只能从这里下手试试 64位链接库的意思 游戏题,win!很关键 进入了Gameobject 看a1,小…

复现Android中GridView的bug并解决

几年前的一个bug&#xff0c;GridView的item高度不一致。如下图&#xff1a; 复现bug的代码&#xff1a; import android.os.Bundle; import android.widget.BaseAdapter; import android.widget.GridView; import androidx.appcompat.app.AppCompatActivity; import java.uti…

【Day12】登录认证、异常处理

1 登录 先创建一个新的 controller 层&#xff1a;LoginController RestController public class LoginController {Autowiredprivate EmpService empService;// 注入PostMapping("/login")public Result login(RequestBody Emp emp) { // 包装对象Emp e empServic…

html 单页面引用vue3和element-plus

引入方式&#xff1a; element-plus基于vue3.0&#xff0c;所以必须导入vue3.0的js文件&#xff0c;然后再导入element-plus自身所需的js以及css文件&#xff0c;导入文件有两种方法&#xff1a;外部引用、下载本地使用 通过外部引用ElementPlus的css和js文件 以及Vue3.0文件 …

Golang | Leetcode Golang题解之第260题只出现一次的数字III

题目&#xff1a; 题解&#xff1a; func singleNumber(nums []int) []int {xorSum : 0for _, num : range nums {xorSum ^ num}lsb : xorSum & -xorSumtype1, type2 : 0, 0for _, num : range nums {if num&lsb > 0 {type1 ^ num} else {type2 ^ num}}return []in…

【数据结构】二叉树OJ题_对称二叉树_另一棵的子树

对称二叉树 题目 101. 对称二叉树 - 力扣&#xff08;LeetCode&#xff09; 给你一个二叉树的根节点 root &#xff0c; 检查它是否轴对称。 示例 1&#xff1a; 输入&#xff1a;root [1,2,2,3,4,4,3] 输出&#xff1a;true示例 2&#xff1a; 输入&#xff1a;root [1,2…

不同类型的指针变量进行++操作的效果

可以看到 不同变量的指针进行操作的时候&#xff0c;他的地址移动的大小是不一样的 运行了打印了一些东西 &#xff0c; 没想到可以用sizeof来打印出 names[0][]这个字符串的长度方法 &#xff0c; 只能用这个 strlen1来判断这个字符串的长度。

使用minio cllient(mc)完成不同服务器的minio的数据迁移和mc基本操作

minio client 前言使用1.拉取minio client 镜像2.部署mc容器3.添加云存储服务器4.迁移数据1.全量迁移2.只迁移某个桶3.覆盖重名文件 5.其他操作1.列出所有alias、列出列出桶中的文件和目录1.1.列出所有alias1.2.列出桶中的文件和目录 2.创建桶、删除桶2.1.创建桶2.2.删除桶 3.删…

DX-10A信号继电器 柜内安装,板前接线 约瑟JOSEF

DX-10型闪光信号继电器型号&#xff1a; DX-10A闪光信号继电器&#xff1b; DX-10B闪光信号继电器&#xff1b; DX-10C闪光信号继电器; 用途 DX-10 闪光继电器用于电力系统断路器的位置信号灯不对应闪光&#xff0c;该继电器是为了适应当前推广使用发光二极管节能指示灯而…

“狂飙”过后,大模型未来在何方?

2024年6月14日&#xff0c;第六届“北京智源大会”在中关村展示中心开幕。 开幕现场&#xff0c;智源研究院、OpenAI、百度、零一万物、百川智能、智谱AI、面壁智能等国内主流大模型公司CEO与CTO&#xff0c;人工智能顶尖学者和产业专家&#xff0c;在围绕人工智能关键技术路径…

rockchip的yolov5 rknn python推理分析

rockchip的yolov5 rknn推理分析 对于rockchip给出的这个yolov5后处理代码的分析&#xff0c;本人能力十分有限&#xff0c;可能有的地方描述的很不好&#xff0c;欢迎大家和我一起讨论&#xff0c;指出我的错误&#xff01;&#xff01;&#xff01; RKNN模型输出 将官方的Y…

GD 32 环形队列

1.0 为什么要使用环形队列 在代码中使用环形队列进行程序的编写&#xff0c;由于在实际开发过程中&#xff0c;会出现接收数据频率太快快于主流程读取数据的频率&#xff0c;这个时候后面来的数据会覆盖前面一包数据&#xff0c;这个时候可以使用环形队列的方式解决这个问题。 …

离散数学,格与子格,格的性质,格的代数系统定义,格的同态与同构,特殊格

目录 1.格与子格 相互对偶 2.格的性质 对偶式 格的保序性 3.格的代数系统定义 格对应的偏序关系就是s的子集之间的包含关系 该格对应的偏序关系就是整除关系 子格必然是格 4.格的同态与同构 格同态&#xff0c;序同态 同态是保序的 例子 5.特殊格 全下…

明星应援系统小程序的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;用户管理&#xff0c;线上应援管理&#xff0c;线下应援管理&#xff0c;应援物品管理&#xff0c;购买订单管理&#xff0c;集资应援管理&#xff0c;集资订单管理&#xff0c;市集订单管理&#xff0…