SCI二区|母亲优化算法(MOA)原理及实现【免费获取Matlab代码】

news2024/12/25 15:10:19

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.结果展示
    • 4.参考文献
    • 5.代码获取


1.背景

2023年,I Matoušová受到母亲与孩子之间的人际互动启发,提出了母亲优化算法(Mother Optimization Algorithm, MOA)。

在这里插入图片描述
在这里插入图片描述

2.算法原理

2.1算法思想

MOA模拟了母亲与孩子之间的人际互动,其灵感是模拟母亲在教育、建议和养育三个阶段对孩子的照顾。

2.2算法过程

教育(探索阶段)

第一阶段称为“教育”,是受到儿童教育的启发。它旨在通过对种群成员位置进行显著改变,增强探索能力。在MOA中,母亲被视为种群中的最佳成员,她培养孩子的行为被模拟为教育阶段:
x i , j P 1 = x i , j + r a n d ( 0 , 1 ) ⋅ ( M j − r a n d ( 2 ) ⋅ x i , j ) (1) x_{i,j}^{P1}=x_{i,j}+\mathrm{rand}(0,1)\cdot(M_j-\mathrm{rand}(2)\cdot x_{i,j})\tag{1} xi,jP1=xi,j+rand(0,1)(Mjrand(2)xi,j)(1)

建议(探索阶段)

在养育孩子中,母亲的一项主要职责是对孩子进行指导。建议阶段通过显著改变种群成员的位置,增加了MOA在探索阶段的能力:
B B i = { X k , F k > F i ∧ k ∈ { 1 , 2 , … , N } } , where  i = 1 , 2 , … , N x i j P 2 = x i , j + rand ( 0 , 1 ) ⋅ ( x i , j − rand ( 2 ) ⋅ S B B i , j ) (2) \begin{aligned}BB_i&=\{X_k,F_k>F_i\wedge k\in\{1,2,\ldots,N\}\},\quad\text{where}~i=1,2,\ldots,N\\\\x_{ij}^{P2}&=x_{i,j}+\text{rand}(0,1)\cdot(x_{i,j}-\text{rand}(2)\cdot SBB_{i,j})\end{aligned}\tag{2} BBixijP2={Xk,Fk>Fik{1,2,,N}},where i=1,2,,N=xi,j+rand(0,1)(xi,jrand(2)SBBi,j)(2)

成长(开发阶段)

在教育过程中,母亲使用各种形式鼓励孩子提高他们的技能。养育导致MOA阶段中局部搜索和开发能力的增强:
x i , j P 3 = x i , j + ( 1 − 2 ⋅ r a n d ( 0 , 1 ) ) ⋅ u b j − l b j t (3) x_{i,j}^{P3}=x_{i,j}+(1-2\cdot\mathrm{rand}(0,1))\cdot\frac{ub_j-lb_j}{t}\tag{3} xi,jP3=xi,j+(12rand(0,1))tubjlbj(3)

流程图

在这里插入图片描述

伪代码

在这里插入图片描述

3.结果展示

在这里插入图片描述

4.参考文献

[1] Matoušová I, Trojovský P, Dehghani M, et al. Mother optimization algorithm: A new human-based metaheuristic approach for solving engineering optimization[J]. Scientific Reports, 2023, 13(1): 10312.

5.代码获取

【资源清单】代码资源清单导航~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1927868.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PHP中的函数与调用:深入解析与应用

目录 一、函数基础 1.1 函数的概念 1.2 函数的定义 1.3 函数的调用 二、PHP函数的分类 2.1 内置函数 2.2 用户自定义函数 2.3 匿名函数 2.4 递归函数 2.5 回调函数 2.6 魔术方法 三、函数的参数与返回值 3.1 参数传递 3.2 返回值 四、函数的高级特性 4.1 可变函…

【HarmonyOS】鸿蒙中如何获取用户相册图片?photoAccessHelper.PhotoViewPicker

【HarmonyOS】鸿蒙中如何获取用户相册图片?photoAccessHelper.PhotoViewPicker 前言 有同学私聊我说,之前的博客文章提到的没有HarmonyOS白名单帐号,如何在OpenHarmony Gitee开发仓里学习API接口。需要注意一个点,默认看到的文档…

07 物以类聚 基于特征的七种算法模型

你好,我是大壮。在 06 讲中,我们介绍了协同过滤(CF)算法,它主要通过用户行为构建用户物品共现矩阵,然后通过 CF 算法预测结果实现个性化推荐。其实,除了利用用户行为特征之外,我们还…

决策树(ID3,C4.5,C5.0,CART算法)以及条件推理决策树R语言实现

### 10.2.1 ID3算法基本原理 ### mtcars2 <- within(mtcars[,c(cyl,vs,am,gear)], {am <- factor(am, labels c("automatic", "manual"))vs <- factor(vs, labels c("V", "S"))cyl <- ordered(cyl)gear <- ordered…

VMware与centos安装

目录 VM安装 安装centos VM安装 VMware Workstation Pro是VMware&#xff08;威睿公司发布的一袋虚拟机软件&#xff09;&#xff0c;它主要功能是可以给用户在单一的桌面上同时运行不同的操作系统&#xff0c;也是可以进行开发、测试、部署新的应用程序的最佳解决方案。 开始…

力扣144题:二叉树的先序遍历

给你二叉树的根节点 root &#xff0c;返回它节点值的 前序 遍历。 示例 1&#xff1a; 输入&#xff1a;root [1,null,2,3] 输出&#xff1a;[1,2,3]示例 2&#xff1a; 输入&#xff1a;root [] 输出&#xff1a;[]示例 3&#xff1a; 输入&#xff1a;root [1] 输出&am…

跳妹儿学编程之ScratchJr(9):程序控制积木篇—短跑比赛

跳妹儿学编程之ScratchJr(7)&#xff1a;动作积木篇—爸爸去散步 跳妹儿学编程之ScratchJr(8)&#xff1a;外观积木篇—捉迷藏 跳妹儿学编程之ScratchJr(9)&#xff1a;程序控制积木篇—短跑比赛 引言 在之前的一篇文章中&#xff0c;我们了解了ScratchJr的动作积木和外观积…

排序(三)——归并排序(MergeSort)

欢迎来到繁星的CSDN&#xff0c;本期内容主要包括归并排序(MergeSort)的实现 一、归并排序的主要思路 归并排序和上一期讲的快速排序很像&#xff0c;都利用了分治的思想&#xff0c;将一整个数组拆成一个个小数组&#xff0c;排序完毕后进行再排序&#xff0c;直到整个数组排序…

php反序列化--2--PHP反序列化漏洞基础知识

一、什么是反序列化&#xff1f; 反序列化是将序列化的字符串还原为PHP的值的过程。 二、如何反序列化 使用unserialize()函数来执行反序列化操作 代码1&#xff1a; $serializedStr O:8:"stdClass":1:{s:4:"data";s:6:"sample";}; $origina…

autoware.universe源码略读(3.15)--perception:object_merger

autoware.universe源码略读3.15--perception:object_merger Overviewnode&#xff08;enum&#xff09;MSG_COV_IDX&#xff08;Class&#xff09;ObjectAssociationMergerNode&#xff08;Func&#xff09;isUnknownObjectOverlapped&#xff08;Func&#xff09;convertListT…

Directory Opus 13 专业版(Windows 增强型文件管理器)值得购买?

在使用电脑时&#xff0c;总少不了和文件打交道。系统自带的 Explorer 资源管理器功能又非常有限&#xff0c;想要拥有一个多功能文件管理器吗&#xff1f; Directory Opus 是一款老牌多功能文件管理器&#xff0c;能很好地接管 Windows 资源管理器。 接管资源管理器 Directo…

【Linux系列】TEE 命令:同时输出到终端和文件

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

(leetcode学习)15. 三数之和

给你一个整数数组 nums &#xff0c;判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k &#xff0c;同时还满足 nums[i] nums[j] nums[k] 0 。请 你返回所有和为 0 且不重复的三元组。 注意&#xff1a;答案中不可以包含重复的三元组。 示例 1&a…

java算法day13

java算法day13 104 二叉树的最大深度111 二叉树的最小深度226 翻转二叉树101 对称二叉树100 相同的树 104 二叉树的最大深度 我最开始想到的是用层序遍历。处理每一层然后计数。思路非常的清楚。 迭代法&#xff1a; /*** Definition for a binary tree node.* public class…

Nginx入门到精通三(反向代理1)

下面内容整理自bilibili-尚硅谷-Nginx青铜到王者视频教程 Nginx相关文章 Nginx入门到精通一&#xff08;基本概念介绍&#xff09;-CSDN博客 Nginx入门到精通二&#xff08;安装配置&#xff09;-CSDN博客 Nginx入门到精通三&#xff08;Nginx实例1&#xff1a;反向代理&a…

Linux系统搭建轻量级个人博客VanBlog并一键发布公网远程访问

文章目录 前言1. Linux本地部署2. VanBlog简单使用3. 安装内网穿透4. 创建公网地址5. 创建固定公网地址 前言 今天和大家分享如何在Linux Ubuntu系统搭建一款轻量级个人博客VanBlog&#xff0c;并结合cpolar内网穿透软件生成公网地址&#xff0c;轻松实现随时随地远程访问本地…

Python与自动化脚本编写

Python与自动化脚本编写 Python因其简洁的语法和强大的库支持&#xff0c;成为了自动化脚本编写的首选语言之一。在这篇文章中&#xff0c;我们将探索如何使用Python来编写自动化脚本&#xff0c;以简化日常任务。 一、Python自动化脚本的基础 1. Python在自动化中的优势 Pyth…

内存RAS技术介绍:内存故障预测

故障预测是内存可靠性、可用性和服务性&#xff08;RAS&#xff09;领域中的一个重要方面&#xff0c;旨在提前识别潜在的不可纠正错误&#xff08;UE&#xff09;&#xff0c;以防止系统崩溃或数据丢失。 4.1 错误日志记录与预测基础 错误一般通过Linux内核模块Mcelog记录到…

1.31、基于长短记忆网络(LSTM)的发动机剩余寿命预测(matlab)

1、基于长短记忆网络(LSTM)的发动机剩余寿命预测的原理及流程 基于长短期记忆网络(LSTM)的发动机剩余寿命预测是一种常见的机器学习应用&#xff0c;用于分析和预测发动机或其他设备的剩余可用寿命。下面是LSTM用于发动机剩余寿命预测的原理和流程&#xff1a; 数据收集&#…

实践之K近邻算法实现红酒聚类

前言 K近邻算法是一种用于分类和回归的非参数统计方法&#xff0c;通过计算样本与训练样本的距离&#xff0c;找出最接近的k个样本进行投票来确定分类结果。算法的基本要素包括K值、距离度量和分类决策规则。 K值决定了邻居的影响程度&#xff0c;距离度量反映了样本间的相似度…