STM32读取24位模数转换(24bit ADC)芯片TM7711数据

news2024/11/16 18:46:31

STM32读取24位模数转换(24bit ADC)芯片TM7711数据

TM7711是一款国产低成本24位ADC芯片,常用于与称重传感器配合实现体重计的应用。这里介绍STM32读取TM7711的电路和代码实现。TM7711与HX710A是兼容的芯片,而与HX711在功能上有所不同:

  1. HX711具有双通道信号采样,三种放大倍数,支持设置模拟电压AVDD(也是内部参考电压)输出给外部电路
  2. TM7711只有单通道信号采样,一种放大倍数,支持内部温度数据读取,支持独立参考电压输入。

市面上的现有模块:
在这里插入图片描述

STM32电路连接

TM7711在模拟电压与数字电压部分有要求:
在这里插入图片描述
所以如果模拟电压为5V,数字电压DVDD供电也要大于等于5V,对于3.3V典型供电的STM32, 仍然可以进行连接。选择2个具有FT(5V耐压)的管脚,将其中对应时钟输出的管脚配置为Open-drain输出,通过1K欧姆电阻上拉到TM7711的供电电压,将对应数据输入的管脚配置为无上下拉的输入模式,则TM7711可配置为2.7~5.5V的供电范围,不受限于STM32本身为3.3V供电的场景,实现正常通讯。如下图所示:

在这里插入图片描述

TM7711测试电路

TM7711典型的应用连接到惠斯通电桥,接收差分电压,由于内部已经设计为128倍信号放大,所以对于5V参考电压输入,最大检测差分电压范围为±20mV。

注意输入信号共模电压方面的要求:
在这里插入图片描述

简单测试可以采用如下方式:
在这里插入图片描述
当可调电阻器为10欧姆时,IN+和IN-差分电压为(5/(4700+4700+10))*10 = 5.31mV。而IN-端电压为2.49734V,IN+端电压为2.50265V,共模和差模电压都在手册电气范围内,可以微调可调电位器的阻值,调整输出差模电压。

TM7711访问协议

TM7711通过控制时钟管脚输出低电平指示正常工作状态,然后识别数据输入管脚的低电平状态判断当前已完成转换并可读取数据,然后发送出24个时钟波形,并在每个时钟波形的下降沿读取数据位,先读到的是24位采样数据的高位。在24个时钟后,还要发送1到3个时钟波形,即第25~27的时钟,指示后面的ADC转换对应的模式:如下所示:
在这里插入图片描述
具体的时序要求如下:
在这里插入图片描述
在这里插入图片描述
另外通过将时钟输出管脚输出60us以上,可将TM7711进行复位。

STM32工程配置

这里采用STM32F103C6T6和STM32CUBEIDE开发环境,实现TM7711的ADC数据读取代码。

首先配置基本工程和时钟系统:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
STM32F103支持USB,可以实现虚拟串口,所以进行USB的配置,采用默认设置接口,另外配置UART2作为可选通讯口。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
然后配置UART2:
在这里插入图片描述
在这里插入图片描述
选择具有FT特征的PB0和PB1作为与TM7711通讯的管脚,PB0作为时钟管脚配置为Open-drain,PB1作为数据管脚配置为输入。
在这里插入图片描述

保存并生成初始代码:
在这里插入图片描述

STM32工程代码

代码主要实现微秒级的时序控制,采用的微秒延时函数参考: STM32 HAL us delay(微秒延时)的指令延时实现方式及优化
STM32虚拟串口的设置可以参考: STM32 USB VCOM和HID的区别,配置及Echo功能实现(HAL)
编译时需要采用节省存储的编译方式,参考: STM32 region `FLASH‘ overflowed by xxx bytes 问题解决

代码在USB的控制文件里,将USB接收到的字节赋值给全局变量cmd,用来控制逻辑执行:

  1. 在收到0x01时,10Hz输出模式测试
  2. 在收到0x02时,温度值读取测试
  3. 在收到0x03时,40Hz输出模式测试
    在这里插入图片描述
    main.c文件完整代码如下:
/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2022 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
//Written by Pegasus Yu in 2022
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "usb_device.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "string.h"

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
__IO float usDelayBase;
void PY_usDelayTest(void)
{
  __IO uint32_t firstms, secondms;
  __IO uint32_t counter = 0;

  firstms = HAL_GetTick()+1;
  secondms = firstms+1;

  while(uwTick!=firstms) ;

  while(uwTick!=secondms) counter++;

  usDelayBase = ((float)counter)/1000;
}

void PY_Delay_us_t(uint32_t Delay)
{
  __IO uint32_t delayReg;
  __IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}

void PY_usDelayOptimize(void)
{
  __IO uint32_t firstms, secondms;
  __IO float coe = 1.0;

  firstms = HAL_GetTick();
  PY_Delay_us_t(1000000) ;
  secondms = HAL_GetTick();

  coe = ((float)1000)/(secondms-firstms);
  usDelayBase = coe*usDelayBase;
}


void PY_Delay_us(uint32_t Delay)
{
  __IO uint32_t delayReg;

  __IO uint32_t msNum = Delay/1000;
  __IO uint32_t usNum = (uint32_t)((Delay%1000)*usDelayBase);

  if(msNum>0) HAL_Delay(msNum);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
#define tm7711_rdy (HAL_GPIO_ReadPin(GPIOB,  GPIO_PIN_1)==0)?1:0

#define tm7711_clk_h HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_SET)
#define tm7711_clk_l HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_RESET)
#define tm7711_dout HAL_GPIO_ReadPin(GPIOB,  GPIO_PIN_1)


/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
UART_HandleTypeDef huart2;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART2_UART_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t cmd=0;
uint32_t tm7711_data;

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_USART2_UART_Init();
  MX_USB_DEVICE_Init();
  /* USER CODE BEGIN 2 */
  PY_usDelayTest();
  PY_usDelayOptimize();



  tm7711_clk_h;
  PY_Delay_us_t(80); //soft reset tm7711
  tm7711_clk_l;
  PY_Delay_us_t(10);

  __HAL_UART_CLEAR_FLAG(&huart2, UART_FLAG_RXNE);
  HAL_UART_Receive_IT(&huart2, (uint8_t *)&cmd, 1);
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {

	  if(cmd==0x01) //Signal test, 10Hz
	  {
		  while(tm7711_rdy) ;
	      while(!tm7711_rdy) ;
	      tm7711_data = 0;
		  PY_Delay_us_t(1);

		  for(uint8_t i=1;i<=24;i++)
		  {
			  tm7711_clk_h;
			  PY_Delay_us_t(1);
			  tm7711_clk_l;
			  tm7711_data |=  (((uint32_t)tm7711_dout)<<(24-i));
			  PY_Delay_us_t(1);
		  }

		  tm7711_clk_h;
		  PY_Delay_us_t(1);
		  tm7711_clk_l;
		  PY_Delay_us_t(1);


		  while( CDC_Transmit_FS(&tm7711_data, 3) != USBD_OK ) PY_Delay_us_t(1);

	  }
	  else if(cmd==0x02) //Temperature test, 40Hz
	  {
		      while(tm7711_rdy) ;
		      while(!tm7711_rdy);
			  tm7711_data = 0;
			  PY_Delay_us_t(1);

			  for(uint8_t i=1;i<=24;i++)
			  {
				  tm7711_clk_h;
				  PY_Delay_us_t(1);
				  tm7711_clk_l;
				  tm7711_data |=  (((uint32_t)tm7711_dout)<<(24-i));
				  PY_Delay_us_t(1);
			  }

			  tm7711_clk_h;
			  PY_Delay_us_t(1);
			  tm7711_clk_l;
			  PY_Delay_us_t(1);

			  tm7711_clk_h;
			  PY_Delay_us_t(1);
			  tm7711_clk_l;
			  PY_Delay_us_t(1);

		  while( CDC_Transmit_FS(&tm7711_data, 3) != USBD_OK ) PY_Delay_us_t(1);

	  }
	  else if(cmd==0x03) //Signal test, 40Hz
	  {

		      while(tm7711_rdy) ;
		      while(!tm7711_rdy) ;

			  tm7711_data = 0;
			  PY_Delay_us_t(1);

			  for(uint8_t i=1;i<=24;i++)
			  {
				  tm7711_clk_h;
				  PY_Delay_us_t(1);
				  tm7711_clk_l;
				  tm7711_data |=  (tm7711_dout<<(24-i));
				  PY_Delay_us_t(1);
			  }

			  tm7711_clk_h;
			  PY_Delay_us_t(1);
			  tm7711_clk_l;
			  PY_Delay_us_t(1);

			  tm7711_clk_h;
			  PY_Delay_us_t(1);
			  tm7711_clk_l;
			  PY_Delay_us_t(1);

			  tm7711_clk_h;
			  PY_Delay_us_t(1);
			  tm7711_clk_l;
			  PY_Delay_us_t(1);

		  while( CDC_Transmit_FS(&tm7711_data, 3) != USBD_OK ) PY_Delay_us_t(1);


	  }
	  else;

	  PY_Delay_us_t(100000);

    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USB;
  PeriphClkInit.UsbClockSelection = RCC_USBCLKSOURCE_PLL_DIV1_5;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief USART2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART2_UART_Init(void)
{

  /* USER CODE BEGIN USART2_Init 0 */

  /* USER CODE END USART2_Init 0 */

  /* USER CODE BEGIN USART2_Init 1 */

  /* USER CODE END USART2_Init 1 */
  huart2.Instance = USART2;
  huart2.Init.BaudRate = 115200;
  huart2.Init.WordLength = UART_WORDLENGTH_8B;
  huart2.Init.StopBits = UART_STOPBITS_1;
  huart2.Init.Parity = UART_PARITY_NONE;
  huart2.Init.Mode = UART_MODE_TX_RX;
  huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart2) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART2_Init 2 */

  /* USER CODE END USART2_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOD_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_RESET);

  /*Configure GPIO pin : PB0 */
  GPIO_InitStruct.Pin = GPIO_PIN_0;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

  /*Configure GPIO pin : PB1 */
  GPIO_InitStruct.Pin = GPIO_PIN_1;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *UartHandle)
{
	HAL_UART_Receive_IT(&huart2, (uint8_t *)&cmd, 1);
}
/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

STM32代码测试

通过串口工具发送0x01,则进行信号采样10Hz输出模式测试(观察工具左侧接收的24位16进制数据):
在这里插入图片描述
通过串口工具发送0x02,则进行温度数据测试(观察工具左侧接收的24位16进制数据):
在这里插入图片描述
通过串口工具发送0x03,则进行信号采样40Hz输出模式测试(观察工具左侧接收的24位16进制数据):
在这里插入图片描述
温度数据可根据手册说明进行解析。

代码实现十进制数据输出,如果要切换为串口printf打印输出,可以参考:
STM32 UART串口printf函数应用及浮点打印代码空间节省 (HAL)

例程下载

STM32F103C6T6-TM7711例程

–End–

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/192762.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

B+树的概念

与分块查找和B树类似。 一棵m阶的B树需满足如下条件: 每个分支结点最多有m棵子树非叶子结点的根结点至少有两棵子树&#xff0c;其他结点至少有⌈m/2⌉\lceil m/2\rceil⌈m/2⌉棵子树结点的子树个数与关键字个数相等关键字全部存储在叶子结点中。所有指向对应记录的指针也存储…

LeetCode刷题---链表经典问题(双指针)

文章目录一、编程题&#xff1a;206. 反转链表&#xff08;双指针-头插法&#xff09;解题思路1.思路2.复杂度分析&#xff1a;3.算法图解代码实现二、编程题&#xff1a;203. 移除链表元素解题思路1.思路2.复杂度分析&#xff1a;3.算法图解代码实现三、编程题&#xff1a;328…

嵌入式开发:为什么物联网正在吞噬嵌入式操作系统?

在过去几年的嵌入式开发中&#xff0c;独立嵌入式软件市场的两大基石已被物联网公司完全吞噬。第一个FreeRTOS被亚马逊吞并&#xff0c;以支持其亚马逊Web服务(AWS)云平台的物联网开发&#xff0c;Express Logic被微软吞并&#xff0c;用于其竞争对手Azure云服务。许多分析师对…

【图像处理OpenCV(C++版)】——4.4 对比度增强之伽马变换

前言&#xff1a; &#x1f60a;&#x1f60a;&#x1f60a;欢迎来到本博客&#x1f60a;&#x1f60a;&#x1f60a; &#x1f31f;&#x1f31f;&#x1f31f; 本专栏主要结合OpenCV和C来实现一些基本的图像处理算法并详细解释各参数含义&#xff0c;适用于平时学习、工作快…

解析某音X-Bogus参数

文章目录写在前面目标正向梳理主要加密函数主要算法解析逆向梳理结论测试进阶写在后面写在前面 本文主要介绍从X-Bogus还原19位数组的过程&#xff0c;方便理解算法。 目标 // 从 var x_bogus DFSzswVVUyXANrqJSkdAml9WX7jG; // 还原出 var x_array [64, 0.00390625, 1, 2…

Dubbo 入门系列之快速部署一个微服务应用

本文将基于 Dubbo Samples 示例演示如何快速搭建并部署一个微服务应用。 背景 Dubbo 作为一款微服务框架&#xff0c;最重要的是向用户提供跨进程的 RPC 远程调用能力。如上图所示&#xff0c;Dubbo 的服务消费者&#xff08;Consumer&#xff09;通过一系列的工作将请求发送给…

FatFs文件系统(只针对SPI-Flash)总结

作用 当我们利用SPI操作Flash时往往读写的都是一段连续的扇区&#xff0c;而FatFs文件系统可以将我们要写入的数据拆分成不连续的扇区见缝插针写入&#xff0c;类似与链表一块扇区指向下一块扇区&#xff0c;不需要物理逻辑地址连续也可以读取整个文件。 这是为啥嘞&#xff…

从零开始部署“生产级别”的主从模式Mysql

从零开始部署“生产级别”的主从模式Mysql 1. 撰写的缘由 Mysql 在日常应用中使用范围非常广泛&#xff0c;它的部署&#xff0c;其实一个docker run 就可以搞定了&#xff0c;但是这种单个standalone模式下&#xff0c;非常不具备高可用性。 测试环境和开发可以随便用&…

集团审计BI项目的特点

审计到底做哪些事情呢&#xff1f;如果之前大家没有接触的话&#xff0c;试着想一下&#xff0c;可能都会想到审计工作做的应该是跟监督有关的事情。实际上&#xff0c;现代审计职责不仅仅只是监督&#xff0c;还要兼顾到服务&#xff0c;具有监督和服务的双重属性。 什么是审…

stm32学习笔记-2 软件安装及创建工程

2 软件安装及创建工程 [toc] 注&#xff1a;笔记主要参考B站 江科大自化协 教学视频“STM32入门教程-2023持续更新中”。 注&#xff1a;工程及代码文件放在了本人的Github仓库。 2.1 软件安装 软件安装的步骤有&#xff1a; 安装Keil5 MDK。Keil5 MDK专门用于给ARM系列单片…

网络安全规划实践

在企业IT战略规划方面&#xff0c;很多时候我们会自动忽略网络安全规划&#xff0c;一是不够重视&#xff0c;从公司到技术部门&#xff0c;对网络安全的认识有限&#xff0c;重视不够&#xff0c;不愿意花钱。 二是技术部门自身原因&#xff0c;不愿意多花成本和精力去规划&am…

推荐14款最受欢迎的3d建模软件

最好的 3D 建模软件可以毫不费力地设计出最奇特的创意&#xff0c;并将它们变成令人惊叹的 3D 可视化效果。如果您确切知道要设计的模型类型&#xff0c;请查看此 3D 建模软件列表&#xff0c;比较 15 种一流的 3D 建模平台&#xff0c;然后选择最适合您的一款。最佳 3D 建模软…

金兔迎福报、新春第一炮【2022 中国开源年度报告】!

【中国开源年度报告】由开源社从 2015 年发起&#xff0c;是国内首个结合多个开源社区、高校、媒体、风投、企业与个人&#xff0c;以纯志愿、非营利的理念和开源社区协作的模式&#xff0c;携手共创完成的开源研究报告。后来由于一些因素暂停&#xff0c;在 2018 年重启了这个…

【王道数据结构】第一章 | 绪论 | 数据结构与算法的概念

目录 1.1数据结构的基本概念 1.2数据结构的三要素 1&#xff09;.数据的逻辑结构&#xff1a; 2&#xff09;.数据的存储结构&#xff08;物理结构&#xff09;&#xff1a; 3&#xff09;.数据的运算 4&#xff09;.数据类型和抽线数据类型 1.3算法的基本概念 1.4 空间…

人大金仓数据库分区表

分区表 声明式创建分区 按列创建分区&#xff08;PARTITION BY LIST&#xff09; 将学员表student按所在城市使用partition by list创建分区 创建分区表&#xff08;基表&#xff09; 创建格式 create table 表名&#xff08;字段名 数据类型&#xff09;PARTITION BY LI…

Redis哨兵工作原理 | 黑马Redis高级篇

哨兵的作用 Redis提供了哨兵机制来实现主从集群的自动故障恢复 监控&#xff1a;sentinel会不断检查master和slave是否按照预期工作 自动故障恢复&#xff1a;如果master故障&#xff0c;sentinel会将一个slave变为master&#xff0c;当故障实例恢复后也以新的master为主 通…

低代码平台助力交通行业数字化科学管理

编者按&#xff1a;本文分析了交通行业的数字化转型需求&#xff0c;并指出了适合交通行业的低代码平台的特性&#xff0c;最后通过相关案例进行了功能展示。关键词&#xff1a;对接能力&#xff0c;国产化&#xff0c;数据引擎&#xff0c;智能化交通运输是国民经济先导性、战…

3、基本的SELECT语句

文章目录1. SQL概述1.1 SQL背景知识1.2 SQL语言排行榜1.3 SQL 分类2 SQL语言的规则与规范2.1 基本规则2.2 SQL大小写规范 &#xff08;建议遵守&#xff09;2.3 注 释2.4 命名规则&#xff08;暂时了解&#xff09;2.5 数据导入指令3 基本的SELECT语句3.0 SELECT...3.1 SELECT …

大数据技术架构(组件)15——Hive:内置UDAF函数

1.4.10、内置UDAF函数1.4.10.1、count--可以发现count(id)会把idnull的值剔除掉select count(1),count(*),count(distinct id),count(id) from test1.4.10.2、sumselect sum(1) from test;1.4.10.3、avg该函数太简单了&#xff0c;就不给大家演示了1.4.10.4、min该函数太简单了…

Hive(5):数据定义语言(DDL)

1 数据定义语言&#xff08;DDL&#xff09;概述 1.1 DDL语法的作用 数据定义语言 (Data Definition Language, DDL)&#xff0c;是SQL语言集中对数据库内部的对象结构进行创建&#xff0c;删除&#xff0c;修改等的操作语言&#xff0c;这些数据库对象包括database&#xff…