Dataset for Stable Diffusion

news2025/1/10 21:23:01

1.Dataset for Stable Diffusion

笔记来源:
1.Flickr8k数据集处理
2.处理Flickr8k数据集
3.Github:pytorch-stable-diffusion
4.Flickr 8k Dataset
5.dataset_flickr8k.json
6.About Train, Validation and Test Sets in Machine Learning Tarang Shah Towards Data Science
7.What are hyperparameters?

1.1 Dataset

采用Flicker8k数据集,该数据集有两个文件,第一个文件为Flicker8k_Dataset (全部为图片),第二个文件为Flickr8k.token.txt (含两列image_id和caption),其中一个image_id对应5个caption (sentence)

1.2 Dataset description file

数据集文本描述文件:dataset_flickr8k.json
文件格式如下:
{“images”: [ {“sentids”: [ ],“imgid”: 0,“sentences”:[{“tokens”:[ ]}, {“tokens”:[ ], “raw”: “…”, “imgid”:0, “sentid”:0}, …, “split”: “train”, “filename”: …jpg}, {“sentids”…} ], “dataset”: “flickr8k”}

参数解释
“sentids”:[0,1,2,3,4]caption 的 id 范围(一个image对应5个caption,所以sentids从0到4)
“imgid”:0image 的 id(从0到7999共8000张image)
“sentences”:[ ]包含一张照片的5个caption
“tokens”:[ ]每个caption分割为单个word
“raw”: " "每个token连接起来的caption
“imgid”: 0与caption相匹配的image的id
“sentid”: 0imag0对应的具体的caption的id
“split”:" "将该image和对应caption划分到训练集or验证集or测试集
“filename”:“…jpg”image具体名称

dataset_flickr8k.json

1.3 Process Datasets

下面代码摘自:Flickr8k数据集处理(仅作学习使用)

import json
import os
import random
from collections import Counter, defaultdict
from matplotlib import pyplot as plt
from PIL import Image
from argparse import Namespace
import numpy as np
import torch
import torch.nn as nn
from torch.nn.utils.rnn import pack_padded_sequence
from torch.utils.data import Dataset
import torchvision
import torchvision.transforms as transforms


def create_dataset(dataset='flickr8k', captions_per_image=5, min_word_count=5, max_len=30):
    """
    Parameters:
        dataset: Name of the dataset
        captions_per_image: Number of captions per image
        min_word_count: Only consider words that appear at least this many times in the dataset (excluding the test set)
        max_len: Maximum number of words in a caption. Captions longer than this will be truncated.
    Output:
        A vocabulary file: vocab.json
        Three dataset files: train_data.json, val_data.json, test_data.json
    """
    # Paths for reading data and saving processed data
    # Path to the dataset JSON file
    flickr_json_path = ".../sd/data/dataset_flickr8k.json"
    # Folder containing images
    image_folder = ".../sd/data/Flicker8k_Dataset"
    # Folder to save processed results
    # The % operator is used to format the string by replacing %s with the value of the dataset variable.
    # For example, if dataset is "flickr8k", the resulting output_folder will be
    # /home/wxy/Documents/PycharmProjects/pytorch-stable-diffusion/sd/data/flickr8k.
    output_folder = ".../sd/data/%s" % dataset

    # Ensure output directory exists
    os.makedirs(output_folder, exist_ok=True)
    print(f"Output folder: {output_folder}")

    # Read the dataset JSON file
    with open(file=flickr_json_path, mode="r") as j:
        data = json.load(fp=j)
    # Initialize containers for image paths, captions, and vocabulary
    # Dictionary to store image paths
    image_paths = defaultdict(list)
    # Dictionary to store image captions
    image_captions = defaultdict(list)
    # Count the number of elements, then count and return a dictionary
    # key:element value:the number of elements.
    vocab = Counter()
    # read from file dataset_flickr8k.json
    for img in data["images"]:  # Iterate over each image in the dataset
        split = img["split"]  # Determine the split (train, val, or test) for the image
        captions = []
        for c in img["sentences"]:  # Iterate over each caption for the image
            # Update word frequency count, excluding test set data
            if split != "test":  # Only update vocabulary for train/val splits
                # c['tokens'] is a list, The number of occurrences of each word in the list is increased by one
                vocab.update(c['tokens'])  # Update vocabulary with words in the caption
            # Only consider captions that are within the maximum length
            if len(c["tokens"]) <= max_len:
                captions.append(c["tokens"])  # Add the caption to the list if it meets the length requirement

        if len(captions) == 0:  # Skip images with no valid captions
            continue
        # Construct the full image path/home/wxy/Documents/PycharmProjects/pytorch-stable-diffusion
        # image_folder + image_name
        # ./Flicker8k_Dataset/img['filename']
        path = os.path.join(image_folder, img['filename'])
        # Save the full image path and its captions in the respective dictionaries
        image_paths[split].append(path)
        image_captions[split].append(captions)

    '''
    After the above steps, we have:
    - vocab(a dict) keys:words、values: counts of all words
    - image_paths: (a dict) keys "train", "val", and "test"; values: lists of absolute image paths
    - image_captions: (a dict) keys: "train", "val", and "test"; values: lists of captions
    '''/home/wxy/Documents/PycharmProjects/pytorch-stable-diffusion
		....
		....

我们通过dataset_flickr8k.json文件把数据集转化为三个词典

dictkeyvalue
vacabwordfrequency of words in all captions
image_path“train”、“val”、“test”lists of absolute image path
image_captions“train”、“val”、“test”lists of captions

我们通过Debug打印其中的内容

print(vocab)
print(image_paths["train"][1])
print(image_captions["train"][1])

def create_dataset(dataset='flickr8k', captions_per_image=5, min_word_count=5, max_len=30):
    """
    Parameters:
        dataset: Name of the dataset
        captions_per_image: Number of captions per image
        min_word_count: Only consider words that appear at least this many times in the dataset (excluding the test set)
        max_len: Maximum number of words in a caption. Captions longer than this will be truncated.
    Output:
        A vocabulary file: vocab.json
        Three dataset files: train_data.json, val_data.json, test_data.json
    """
    ....
    ....
    # Create the vocabulary, adding placeholders for special tokens
    # Add placeholders<pad>, unregistered word identifiers<unk>, sentence beginning and end identifiers<start><end>
    words = [w for w in vocab.keys() if vocab[w] > min_word_count]  # Filter words by minimum count
    vocab = {k: v + 1 for v, k in enumerate(words)}  # Create the vocabulary with indices
    # Add special tokens to the vocabulary
    vocab['<pad>'] = 0
    vocab['<unk>'] = len(vocab)
    vocab['<start>'] = len(vocab)
    vocab['<end>'] = len(vocab)

    # Save the vocabulary to a file
    with open(os.path.join(output_folder, 'vocab.json'), "w") as fw:
        json.dump(vocab, fw)

    # Process each dataset split (train, val, test)
    # Iterate over each split: split = "train" 、 split = "val" 和 split = "test"
    for split in image_paths:
        # List of image paths for the split
        imgpaths = image_paths[split]  # type(imgpaths)=list
        # List of captions for the split
        imcaps = image_captions[split]  # type(imcaps)=list
        # store result that converting words of caption to their respective indices in the vocabulary
        enc_captions = []

        for i, path in enumerate(imgpaths):
            # Check if the image can be opened
            img = Image.open(path)
            # Ensure each image has the required number of captions
            if len(imcaps[i]) < captions_per_image:
                filled_num = captions_per_image - len(imcaps[i])
                # Repeat captions if needed
                captions = imcaps[i] + [random.choice(imcaps[i]) for _ in range(0, filled_num)]
            else:
                # Randomly sample captions if there are more than needed
                captions = random.sample(imcaps[i], k=captions_per_image)

            assert len(captions) == captions_per_image

            for j, c in enumerate(captions):
                # Encode each caption by converting words to their respective indices in the vocabulary
                enc_c = [vocab['<start>']] + [vocab.get(word, vocab['<unk>']) for word in c] + [vocab["<end>"]]
                enc_captions.append(enc_c)

        assert len(imgpaths) * captions_per_image == len(enc_captions)

        data = {"IMAGES": imgpaths,
                "CAPTIONS": enc_captions}

        # Save the processed dataset for the current split (train,val,test)
        with open(os.path.join(output_folder, split + "_data.json"), 'w') as fw:
            json.dump(data, fw)


create_dataset()

经过create_dataset函数,我们得到如下图的文件

四个文件的详细内容见下表

train_data.json中的第一个key:IMAGES
train_data.json中的第二个key:CAPTIONS
test_data.json中的第一个key:IMAGES
test_data.json中的第二个key:CAPTIONS
val_data.json中的第一个key:IMAGES
val_data.json中的第二个key:CAPTIONS
vocab.json开始部分
vocab.json结尾部分

生成vocab.json的关键代码
首先统计所有caption中word出现至少大于5次的word,而后给这些word依次赋予一个下标

# Create the vocabulary, adding placeholders for special tokens
    # Add placeholders<pad>, unregistered word identifiers<unk>, sentence beginning and end identifiers<start><end>
    # Create a list of words from the vocabulary that have a frequency higher than 'min_word_count'
    # min_word_count: Only consider words that appear at least this many times in the dataset (excluding the test set)
    words = [w for w in vocab.keys() if vocab[w] > min_word_count]  # Filter words by minimum count
    # assign an index to each word, starting from 1 (indices start from 0, so add 1)
    vocab = {k: v + 1 for v, k in enumerate(words)}  # Create the vocabulary with indices

最终生成vocab.json

生成 [“split”]_data.json 的关键
读入文件dataset_flickr8k.json,并创建两个字典,第一个字典放置每张image的绝对路径,第二个字典放置描述image的caption,根据vocab将token换为下标保存,根据文件dataset_flickr8k.json中不同的split,这image的绝对路径和相应caption保存在不同文件中(train_data.json、test_data.json、val_data.json)

dataset_flickr8k.json

train_data.json


从vocab中获取token的下标得到CAPTION的编码

for j, c in enumerate(captions):
  # Encode each caption by converting words to their respective indices in the vocabulary
  enc_c = [vocab['<start>']] + [vocab.get(word, vocab['<unk>']) for word in c] + [vocab["<end>"]]
  enc_captions.append(enc_c)


尝试使用上面生成的测试集文件test_data.json和vocab.json输出某张image以及对应的caption
下面代码摘自:Flickr8k数据集处理(仅作学习使用)

'''
test
1.Iterates over the 5 captions for 下面代码引用自:[Flickr8k数据集处理](https://blog.csdn.net/weixin_48981284/article/details/134676813)(仅作学习使用)the 250th image.
2.Retrieves the word indices for each caption.
3.Converts the word indices to words using vocab_idx2word.
4.Joins the words to form complete sentences.
5.Prints each caption.
'''
import json
from PIL import Image
from matplotlib import pyplot as plt
# Load the vocabulary from the JSON file
with open('.../sd/data/flickr8k/vocab.json', 'r') as f:
    vocab = json.load(f)  # Load the vocabulary from the JSON file into a dictionary
# Create a dictionary to map indices to words
vocab_idx2word = {idx: word for word, idx in vocab.items()}
# Load the test data from the JSON file
with open('.../sd/data/flickr8k/test_data.json', 'r') as f:
    data = json.load(f)  # Load the test data from the JSON file into a dictionary
# Open and display the 250th image in the test set
# Open the image at index 250 in the 'IMAGES' list
content_img = Image.open(data['IMAGES'][250])
plt.figure(figsize=(6, 6))
plt.subplot(1,1,1)
plt.imshow(content_img)
plt.title('Image')
plt.axis('off')
plt.show()
# Print the lengths of the data, image list, and caption list
# Print the number of keys in the dataset dictionary (should be 2: 'IMAGES' and 'CAPTIONS')
print(len(data))
print(len(data['IMAGES']))  # Print the number of images in the 'IMAGES' list
print(len(data["CAPTIONS"]))  # Print the number of captions in the 'CAPTIONS' list
# Display the captions for the 300th image
# Iterate over the 5 captions associated with the 300th image
for i in range(5):
    # Get the word indices for the i-th caption of the 300th image
    word_indices = data['CAPTIONS'][250 * 5 + i]
    # Convert indices to words and join them to form a caption
    print(''.join([vocab_idx2word[idx] for idx in word_indices]))

data 的 key 有两个 IMAGES 和 CAPTIONS
测试集image有1000张,每张对应5个caption,共5000个caption
第250张图片的5个caption如下图

1.4 Dataloader

下面代码摘自:Flickr8k数据集处理(仅作学习使用)

import json
import os
import random
from collections import Counter, defaultdict
from PIL import Image
import torch
from torch.utils.data import Dataset
from torch.utils import data
import torchvision.transforms as transforms


class ImageTextDataset(Dataset):
    """
    Pytorch Dataset class to generate data batches using torch DataLoader
    """
    def __init__(self, dataset_path, vocab_path, split, captions_per_image=5, max_len=30, transform=None):
        """
        Parameters:
            dataset_path: Path to the JSON file containing the dataset
            vocab_path: Path to the JSON file containing the vocabulary
            split: The dataset split, which can be "train", "val", or "test"
            captions_per_image: Number of captions per image
            max_len: Maximum number of words per caption
            transform: Image transformation methods
        """
        self.split = split
        # Validate that the split is one of the allowed values
        assert self.split in {"train", "val", "test"}
        # Store captions per image
        self.cpi = captions_per_image
        # Store maximum caption length
        self.max_len = max_len

        # Load the dataset
        with open(dataset_path, "r") as f:
            self.data = json.load(f)

        # Load the vocabulary
        with open(vocab_path, "r") as f:
            self.vocab = json.load(f)

        # Store the image transformation methods
        self.transform = transform

        # Number of captions in the dataset
        # Calculate the size of the dataset
        self.dataset_size = len(self.data["CAPTIONS"])

    def __getitem__(self, i):
        """
            Retrieve the i-th sample from the dataset
        """
        # Get [i // self.cpi]-th image corresponding to the i-th sample (each image has multiple captions)
        img = Image.open(self.data['IMAGES'][i // self.cpi]).convert("RGB")
        # Apply image transformation if provided
        if self.transform is not None:
            # Apply the transformation to the image
            img = self.transform(img)
        # Get the length of the caption
        caplen = len(self.data["CAPTIONS"][i])
        # Pad the caption if its length is less than max_len
        pad_caps = [self.vocab['<pad>']] * (self.max_len + 2 - caplen)
        # Convert the caption to a tensor and pad it
        caption = torch.LongTensor(self.data["CAPTIONS"][i] + pad_caps)
        return img, caption, caplen  # Return the image, caption, and caption length

    def __len__(self):
        return self.dataset_size  # Number of samples in the dataset


def make_train_val(data_dir, vocab_path, batch_size, workers=4):
    """
        Create DataLoader objects for training, validation, and testing sets.
        Parameters:
            data_dir: Directory where the dataset JSON files are located
            vocab_path: Path to the vocabulary JSON file
            batch_size: Number of samples per batch
            workers: Number of subprocesses to use for data loading (default is 4)
        Returns:
            train_loader: DataLoader for the training set
            val_loader: DataLoader for the validation set
            test_loader: DataLoader for the test set
    """
    # Define transformation for training set
    train_tx = transforms.Compose([
        transforms.Resize(256),  # Resize images to 256x256
        transforms.ToTensor(),  # Convert image to PyTorch tensor
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # Normalize using ImageNet mean and std
    ])

    val_tx = transforms.Compose([
        transforms.Resize(256),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])
    # Create dataset objects for training, validation, and test sets
    train_set = ImageTextDataset(dataset_path=os.path.join(data_dir, "train_data.json"), vocab_path=vocab_path,
                                 split="train", transform=train_tx)

    vaild_set = ImageTextDataset(dataset_path=os.path.join(data_dir, "val_data.json"), vocab_path=vocab_path,
                                 split="val", transform=val_tx)

    test_set = ImageTextDataset(dataset_path=os.path.join(data_dir, "test_data.json"), vocab_path=vocab_path,
                                split="test", transform=val_tx)
    # Create DataLoader for training set with data shuffling
    train_loder = data.DataLoader(
        dataset=train_set, batch_size=batch_size, shuffer=True,
        num_workers=workers, pin_memory=True
    )
    # Create DataLoader for validation set without data shuffling
    val_loder = data.DataLoader(
        dataset=vaild_set, batch_size=batch_size, shuffer=False,
        num_workers=workers, pin_memory=True, drop_last=False
    )
    # Create DataLoader for test set without data shuffling
    test_loder = data.DataLoader(
        dataset=test_set, batch_size=batch_size, shuffer=False,
        num_workers=workers, pin_memory=True, drop_last=False
    )

    return train_loder, val_loder, test_loder

创建好train_loader后,接下来我们就可以着手开始训练SD了!

1.5 Training、Validation、Test Set

了解训练集、测试集、验证集的作用

训练集
用于模型训练阶段

Training Dataset: The sample of data used to fit the model.

The actual dataset that we use to train the model (weights and biases in the case of a Neural Network). The model sees and learns from this data.

验证集
用于模型调参阶段

Validation Dataset: The sample of data used to provide an unbiased evaluation of a model fit on the training dataset while tuning model hyperparameters. The evaluation becomes more biased as skill on the validation dataset is incorporated into the model configuration.

The validation set is used to evaluate a given model, but this is for frequent evaluation. We, as machine learning engineers, use this data to fine-tune the model hyperparameters. Hence the model occasionally sees this data, but never does it “Learn” from this. We use the validation set results, and update higher level hyperparameters. So the validation set affects a model, but only indirectly. The validation set is also known as the Dev set or the Development set. This makes sense since this dataset helps during the “development” stage of the model.

测试集
在模型训练且调参阶段完成后测试模型性能

Test Dataset: The sample of data used to provide an unbiased evaluation of a final model fit on the training dataset.

The Test dataset provides the gold standard used to evaluate the model. It is only used once a model is completely trained(using the train and validation sets). The test set is generally what is used to evaluate competing models (For example on many Kaggle competitions, the validation set is released initially along with the training set and the actual test set is only released when the competition is about to close, and it is the result of the the model on the Test set that decides the winner). Many a times the validation set is used as the test set, but it is not good practice. The test set is generally well curated. It contains carefully sampled data that spans the various classes that the model would face, when used in the real world.

数据集划分比例
Now that you know what these datasets do, you might be looking for recommendations on how to split your dataset into Train, Validation and Test sets.

This mainly depends on 2 things. First, the total number of samples in your data and second, on the actual model you are training.

Some models need substantial data to train upon, so in this case you would optimize for the larger training sets. Models with very few hyperparameters will be easy to validate and tune, so you can probably reduce the size of your validation set, but if your model has many hyperparameters, you would want to have a large validation set as well(although you should also consider cross validation). Also, if you happen to have a model with no hyperparameters or ones that cannot be easily tuned, you probably don’t need a validation set too!

All in all, like many other things in machine learning, the train-test-validation split ratio is also quite specific to your use case and it gets easier to make judge ment as you train and build more and more models.

What are hyperparameters?
Hyperparameters are external configuration variables that data scientists use to manage machine learning model training. Sometimes called model hyperparameters, the hyperparameters are manually set before training a model. They’re different from parameters, which are internal parameters automatically derived during the learning process and not set by data scientists.
Examples of hyperparameters include the number of nodes and layers in a neural network and the number of branches in a decision tree. Hyperparameters determine key features such as model architecture, learning rate, and model complexity.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1925322.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

python-28-零基础自学python-json存数据、读数据,及程序合并

学习内容&#xff1a;《python编程&#xff1a;从入门到实践》第二版 知识点&#xff1a; import json引入、 try-except-else return def函数、打开文件、 练习内容&#xff1a; 练习10-11&#xff1a;喜欢的数 编写一个程序&#xff0c;提示用户输入喜欢的数&#xff…

机器学习基本概念,Numpy,matplotlib和张量Tensor知识进一步学习

机器学习一些基本概念&#xff1a; 监督学习 监督学习是机器学习中最常见的形式之一&#xff0c;它涉及到使用带标签的数据集来训练模型。这意味着每条训练数据都包含输入特征和对应的输出标签。目标是让模型学会从输入到输出的映射&#xff0c;这样当给出新的未见过的输入时…

06:串口通信一

串口通信初识 1、串口的基本认识2、串口的电平3、接线方式4、通过单片机向PC发送每隔1s发送一个字符A 1、串口的基本认识 串口也就是接口&#xff0c;称串行通信接口或串行通讯接口(通常指COM接口)&#xff0c;是采用串行通信方式的扩展接口。用来进行数据一位一位地顺序传送。…

【2024_CUMCM】时间序列4-实战

目录 思考建模思路 例1 定义date 创建时间序列模拟器 结果分析 例2 序列图 创建时间序列模型 未除去异常值 剔除有异常值 勾选 结果 注 思考建模思路 &#xff08; 1 &#xff09;处理数据的缺失值问题、生成时间变量并画出时间序列图&#xff1b; &…

OpenGL笔记九之彩色三角形与重心插值算法

OpenGL笔记九之彩色三角形与重心插值算法 —— 2024-07-07 晚上 bilibili赵新政老师的教程看后笔记 code review! 文章目录 OpenGL笔记九之彩色三角形与重心插值算法1.运行3.main.cpp 1.运行 3.main.cpp 代码 #include <iostream>#define DEBUG//注意&#xff1a;glad…

算法 —— 高精度

目录 加法高精度 两个正整数相加 两个正小数相加 两正数相加 减法高精度 两个正整数相减 两个正小数相减 两正数相减 加减法总结 乘法高精度 两个正整数相乘 两个正小数相乘 乘法总结 加法高精度 题目来源洛谷&#xff1a;P1601 AB Problem&#xff08;高精&#x…

链路追踪系列-01.mac m1 安装zipkin

下载地址&#xff1a;https://hub.docker.com/r/openzipkin/zipkin jelexjelexxudeMacBook-Pro zipkin-server % pwd /Users/jelex/Documents/work/zipkin-server 先启动Es: 可能需要先删除 /Users/jelex/dockerV/es/plugins 目录下的.DS_Store 当端口占用时再次启动&#x…

java多线程操作之CAS

1&#xff0c;什么是CAS&#xff1f; CAS&#xff08;Compare-And-Swap&#xff09; 比较并交换&#xff0c;用于实现同步和锁机制。经常配合juc中Atomic相关类进行。Atomic相关类无法解决aba问题。 2&#xff0c;CAS核心思想是什么&#xff1f; 比较和交换。本质上就是乐观锁…

数字电路-建立时间和保持时间详解

对于数字系统而言&#xff0c;建立时间&#xff08;setup time&#xff09;和保持时间&#xff08;hold time&#xff09;是数字电路时序的基础。数字电路系统的稳定性&#xff0c;基本取决于时序是否满足建立时间和保持时间。我自己在初学时一度很难理解清楚他们的概念&#x…

android studio开发

Kotlin 编程简介 | Android Basics Compose - First Android app | Android Developers (google.cn) 这是官网的教程&#xff0c;实现试一下。 之后进入课程 您的第一个 Kotlin 程序 (google.cn) 程序可以被视为一系列指示计算机或设备执行某项操作的指令&#xff0c;

Highlight.js示例

图例 代码在图片后面 点赞❤️关注&#x1f64f;收藏⭐️ 源代码 <!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <meta name"viewport" content"widthdevice-width, initial-scale1.0"…

2024007月份 制作一个 Windows 10 U disk 安装工具

1&#xff0c;下载微软官方 Win10 U盘安装工具 工具名称&#xff1a; MediaCreationTool 下载地址&#xff1a; https://www.microsoft.com/zh-cn/software-download/windows10 2&#xff0c;制作 U盘安装盘 双击打开&#xff0c;并单击“接受” 选中 为另一台电脑创建安…

微信小程序如何实现登陆和注册功能?

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;开发者-曼亿点 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 曼亿点 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a…

python中的os模块和shutil模块

目录 os 1. 获取当前脚本绝对路径 2.获得工作路径&#xff1b; 3.该路径文件和目录 4.walk&#xff0c;查看目录下所有的文件&#xff08;含子孙文件&#xff09; 5.创建文件夹 6.os.makedirs(path) 7.路径拼接 8. 获取当前文件的上级目录 9.判断路径是否存在 10.是…

linux系统查看父子进程

① 查找特定进程的父进程 ps -o pid,ppid,cmd -p 1234 查找进程 PID 为 1234 的父进程 ② 显示所有进程的树状结构 pstree ③ 显示特定进程及其父进程的树状结构 pstree -s 1234 ④ 启动 top 后&#xff0c;按下 c 键可以查看完整命令&#xff0c;按下 f 键进入字段管理界面…

Java | Leetcode Java题解之第233题数字1的个数

题目&#xff1a; 题解&#xff1a; class Solution {public int countDigitOne(int n) {// mulk 表示 10^k// 在下面的代码中&#xff0c;可以发现 k 并没有被直接使用到&#xff08;都是使用 10^k&#xff09;// 但为了让代码看起来更加直观&#xff0c;这里保留了 klong mu…

载波相位定位原理

在现代定位系统中&#xff0c;载波相位测距技术因其高精度而备受青睐。本文将探讨其工作原理&#xff0c;以及如何通过数学模型和算法来校正测量中的误差。 载波相位测距模型 载波相位测距是基于接收卫星发射的载波信号相位变化来进行距离测量的技术。它利用了信号传输过程中…

springboot系列教程(二):Log4j2日志信息(含源码)

一、Log4j2日志简介 日志打印是了解Web项目运行的最直接方式&#xff0c;所以在项目开发中是需要首先搭建好的环境。 1、Log4j2特点 核心特点 相比与其他的日志系统&#xff0c;log4j2丢数据这种情况少&#xff1b;disruptor技术&#xff0c;在多线程环境下&#xff0c;性能…

攻防世界 level3

这道题把附件下载下来发现一个libc(动态链接库)&#xff0c;那这道题估计需要利用libc来确定elf中函数的地址 国际惯例checksec&#xff0c;发现level3没开栈溢出保护和地址随机化&#xff0c;libc全开 拖入32位ida&#xff0c;没发现留后门和system函数&#xff0c;只有个writ…

SCI一区级 | Matlab实现GJO-CNN-LSTM-Multihead-Attention多变量时间序列预测

SCI一区级 | Matlab实现GJO-CNN-LSTM-Mutilhead-Attention多变量时间序列预测 目录 SCI一区级 | Matlab实现GJO-CNN-LSTM-Mutilhead-Attention多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现GJO-CNN-LSTM-Mutilhead-Attention金豺优化算…