算法 —— 高精度

news2024/11/15 13:24:25

目录

加法高精度

两个正整数相加

两个正小数相加

两正数相加

减法高精度

两个正整数相减

两个正小数相减

两正数相减

加减法总结

 乘法高精度

两个正整数相乘

两个正小数相乘

乘法总结


加法高精度

题目来源洛谷:P1601 A+B Problem(高精)

高精度:顾名思义,就是在很大的位数情况下进行运算,其基本思想就是用数组进行模拟加法进位,最后遍历数组输出。可以看到提示的a,b最大值达到10^18,而内置类型long long能接受数据的最大值在10^19,题目目的就是为了不让你内置类型来接收数据


两个正整数相加

我们可以使用字符串来模拟高精度运算,本题要求很少:只需要正整数相加即可,以 83 + 2047 为例模拟一下加法过程,我们可以看一下下图:

按照加法原则,个位与个位相加,十位与十位相加……注意相加的过程中要加上前一位的进位,注意最高位相加后要看进位d是否为0,代码如下:

// 整数部分 // 全是正数
string add_int(string a, string b)
{
	string ret; //存放最终结果
	int d = 0;// 记录进位
	int na = a.size(), nb = b.size();
	int n = max(na, nb);// 统一个数
	// 位数不够前面补0
	if (na > nb)
		for (int i = 1; i <= na - nb; i++)
			b = "0" + b;
	else
		for (int i = 1; i <= nb - na; i++)
			a = "0" + a;
	for (int i = n - 1; i >= 0; i--)
	{
		int tmp = 0, tmp_a = a[i] - '0', tmp_b = b[i] - '0';
		tmp = tmp_a + tmp_b + d; //加前一次的进位
		d = tmp / 10;
		tmp %= 10;
		ret.push_back(tmp + '0');
	}
	if (d != 0)
		ret.push_back(d + '0');
	reverse(ret.begin(), ret.end());
	return ret;
}

两个正小数相加

 根据此题,我又试着把大于0的小数相加设计了出来,这样使得原本加法更加完善,可以对大于等于0的所有数进行加法运算,但是需要注意一点的是,小数部分靠近小数点的为高位,意味着我们要在数字后面补0,以 0.99 和 0.4721 为例子,看以下图示:

根据上图可以用代码将其实现:

// 小数部分  // 全是正数
string add_float(string a, string b)
{
	string ret;
	int d = 0;// 记录进位
	int na = a.size(), nb = b.size();
	int n = max(na, nb);// 统一个数
	// 位数不够后面补0
	if (na > nb)
		for (int i = 1; i <= na - nb; i++)
			b = b + "0";
	else
		for (int i = 1; i <= nb - na; i++)
			a = a + "0";
	for (int i = n - 1; i >= 0; i--)
	{
		int tmp = 0, tmp_a = a[i] - '0', tmp_b = b[i] - '0';
		tmp = tmp_a + tmp_b + d; //加前一次的进位
		d = tmp / 10;
		tmp %= 10;
		ret.push_back(tmp + '0');
	}
	if (d != 0)// 说明要进位到整数
		ret.push_back('x'); 
	reverse(ret.begin(), ret.end());//前导x说明要整数部分+1
	return ret;
}

两正数相加

通过上述两个函数合并可以试着实现正数的加法,这里说一下我的思路:

  1. 找到两个字符串中的小数点
  2. 将字符串分为两个子串:左半部分为正整数子串,右半部分为正小数子串
  3. 两个部分分别调用上述函数
  4. 结果合并成一个字符串,该字符串为最终结果

 为了提高代码的可读性,本蒟蒻在每行代码后面添加了注释,大家可以试着看一下:

bz:本人考虑到小数部分相加刚好为1的情况,那么可以试着不要后面一大串全是0的子串,直接输出整数部分即可,这样更加贴合大家生活中的加法习惯。以下为代码:

// 加法
string add(string a,string b)
{
	auto it_a = a.find('.'), it_b = b.find('.');
	string a_int = a, b_int = b, a_float, b_float; // 默认a b是整数
	if (it_a != -1)// 找到小数点了就要分成两部分
	{
		a_int = a.substr(0, it_a); // 把整数部分裁下来
		a_float = a.substr(it_a + 1, a.size() - it_a); // 把小数部分裁下来
	}
	if(it_b != -1)
	{
		b_int = b.substr(0, it_b);
		b_float = b.substr(it_b + 1, b.size() - it_b); // 同上
	}
	string ad_float = add_float(a_float, b_float);
	if (ad_float[0] == 'x')//看看有没有前导x,有就需要进位
	{
		ad_float = ad_float.substr(1, ad_float.size() - 1); //把前导x舍弃
		a_int = add_int(a_int, "1"); // 小数进位只会加1
	}
	int count = 0;
	for (auto e : ad_float) // 看看结尾是不是全是0
		if (e == '0')
			count++;
	if (count == ad_float.size()) // 说明全是0,ret可以不要了
		ad_float.clear(); //清空
	string ad_int = add_int(a_int, b_int);
	string ret = ad_int;
	if (ad_float.size() != 0) // 说明里面有小数
		ret = ret + "." + ad_float;
	return ret;
}

减法高精度

减法高精度与加法高精度略有不同,其区别在于进位,加法的进位是把进位值给高一级位,而减法进位需要向高一级位借一位(前数比后数小的前提下)


两个正整数相减

减法的难点在于:它不像加法那样可以一位一位顺位相加,在借位的情况下,可能出现越位减一的情况,例如100 - 9,要从百位借位,这样大大增加了难度。

注意以下两个特殊情况:

  1. 两个相同数相减为0
  2. 低位数不够,向高位借1

根据加法的代码,可以考虑在加法的基础上进行修改,并且通过两个正整数的相减可以实现一正一负的加法运算,提高了代码的复用性。看以下一下代码:

// 整数部分 // 全是正数 // 大 - 小
string sub_int(string a, string b)
{
	string ret; // 存放最终结果
	int d = 0;// 记录进位
	int na = a.size(), nb = b.size();
	int n = max(na, nb);// 统一个数
	// 位数不够前面补0
	if (na > nb)
		for (int i = 1; i <= na - nb; i++)
			b = "0" + b;
	else
		for (int i = 1; i <= nb - na; i++)
			a = "0" + a;
	string maxn = a, minn = b; // 重新搞两个字符串(提高可读性)
	for (int i = n - 1; i >= 0; i--)
	{
		int tmp = 0, tmp_max = maxn[i] - '0' + d, tmp_min = minn[i] - '0'; // 进位放初始化
		d = 0;// 注意用完 d 归零
		if (tmp_max < tmp_min) // 借位情况(大数该位不够减小数该位)
		{
			tmp_max += 10; //问前面一位要了一个1
			d = -1;
		}
		tmp = tmp_max - tmp_min;
		ret.push_back(tmp + '0');
	}
	for (int i = n - 1; i >= 1; i--) //一样的数相减全是0删掉(注意留最后一个0)
	{
		if (ret[i] == '0')
			ret.pop_back();
		else
			break;
	}
	reverse(ret.begin(), ret.end());
	return ret;
}

两个正小数相减

正小数相减和相加类似,最后返回的字符串如果要借个位的一位就存放一个x,两函数合并时判断是否有x(需要向个位借一位的情况)即可,代码如下:

// 小数部分 // 全是正数 // 大 - 小
string sub_float(string a, string b)
{
	string ret; // 存放最终结果
	int d = 0;// 记录进位
	int na = a.size(), nb = b.size();
	int n = max(na, nb);// 统一个数
	// 位数不够后面补0
	if (na > nb)
		for (int i = 1; i <= na - nb; i++)
			b = b + "0";
	else
		for (int i = 1; i <= nb - na; i++)
			a = a + "0";
	string maxn = a, minn = b; // 重新搞两个字符串(提高可读性)
	for (int i = n - 1; i >= 0; i--)
	{
		int tmp = 0, tmp_max = maxn[i] - '0' + d, tmp_min = minn[i] - '0'; // 进位放初始化
		d = 0;// 注意用完 d 归零
		if (tmp_max < tmp_min) // 借位情况(大数该位不够减小数该位)
		{
			tmp_max += 10; //问前面一位要了一个1
			d = -1;
		}
		tmp = tmp_max - tmp_min;
		ret.push_back(tmp + '0');
	} 
	if (d == -1)// 整数部分也要减1
		ret.push_back('x');
	reverse(ret.begin(), ret.end());
	return ret;
}

两正数相减

与加法相同,裁剪小数和整数两部分字符串依次调用各自的函数即可,代码如下:

// 减法  // 默认 大 - 小
string sub(string a, string b)
{
	auto it_a = a.find('.'), it_b = b.find('.');
	string a_int = a, b_int = b, a_float, b_float; // 默认a b是整数
	if (it_a != -1)// 找到小数点了就要分成两部分
	{
		a_int = a.substr(0, it_a); // 把整数部分裁下来
		a_float = a.substr(it_a + 1, a.size() - it_a); // 把小数部分裁下来
	}
	if (it_b != -1)
	{
		b_int = b.substr(0, it_b);
		b_float = b.substr(it_b + 1, b.size() - it_b); // 同上
	}
	string su_float = sub_float(a_float, b_float);
	if (su_float[0] == 'x')//看看有没有前导x,有就需要借位
	{
		su_float = su_float.substr(1, su_float.size() - 1); //把前导x舍弃
		a_int = sub_int(a_int, "1"); // 小数进位只会加1
	}
	int count = 0;
	for (auto e : su_float) // 看看结尾是不是全是0
		if (e == '0')
			count++;
	if (count == su_float.size()) // 说明全是0,ret可以不要了
		su_float.clear(); //清空
	string su_int = sub_int(a_int, b_int);
	string ret = su_int;
	if (su_float.size() != 0) // 说明里面有小数
		ret = ret + "." + su_float;
	return ret;
}

加减法总结

 通过减法可以利用该函数实现加法中的正数加负数,当然在面对小减大的情况时,需要通过一个比较函数来判断两数的绝对值大小处理完之和直接在最终结果的字符串前头插一个” - " 即可,加减法无非以下几种情况:

                                                         加减法所有可能情况
式子形式大小比较结果大小
正数a + 正数b两者都大于0大于0
正数a + 负数b| a | >= | b |大于等于0
正数a + 负数b| a | < | b |小于0
负数a + 负数b两者都小于0小于0

正数a - 正数b

| a | >= | b |大于等于0
正数a - 负数ba >= 0    b < 0大于0
负数a - 正数ba < 0    b >= 0小于0
负数a - 负数b| a | >= | b |小于0

负数a - 负数b

| a | < | b |大于0

 以下代码为绝对值化处理和比较函数的内容,大家可以根据本蒟蒻上述代码尝试其他情况的代码编写。

// 绝对值化
if (a[0] == '-')
a = a.substr(1, a.size() - 1);
if (b[0] == '-')
b = b.substr(1, b.size() - 1);

// 比较函数
bool my_cmp(string a, string b) // 补0 且 绝对值化后进行比较
{
	// 默认 a > b
	for (int i = 0; i < a.size(); i++)
		if (a[i] < b[i])
			return false;
	return true;
}

 乘法高精度

本题来自洛谷题库:P1303 A*B Problem,相比加减法的高精度,乘法的高精度相对麻烦一些,但是归根结底还是运用字符串来实现位数的变化,其主要区别在于进位,加减法的进位只会是1,但是乘法的进位可以达到8(9 * 9 = 81),本文不探讨除法的高精度,个人认为除法的高精度不常见,接下来我们试着解决上题。

注意特殊情况:0和任何数相乘都为0!!!


两个正整数相乘

以 679 x 58 为例,看以下图片如何模拟该乘法过程:

 可以看到乘法内部实际为多个加法操作的求和,我们可以在上面的加法操作上进行修改:

// 整数部分 // 全是正数
string mul_int(string a, string b)
{
	if (a == "0" || b == "0")//处理特例
		return "0";
	string ret = "0"; // 存放最终结果
	int d = 0;// 记录进位
	string longer = a, shorter = b; // 假设法
	if (a.size() < b.size())
		swap(longer, shorter);
	int n = shorter.size(); // 乘的次数
	reverse(longer.begin(), longer.end()); reverse(shorter.begin(), shorter.end()); //逆置后位数顺序
	for (int i = 0; i < n; i++)
	{
		string str; // 临时存放数据
		for (int j = 0; j < longer.size(); j++)
		{
			int tmp = 0, tmp_longer = longer[j] - '0', tmp_shorter = shorter[i] - '0';
			tmp = tmp_longer * tmp_shorter + d; //加上进位
			d = tmp / 10;
			tmp %= 10;
			str.push_back(tmp + '0');
		}
		if (d != 0) //比原数多一位
			str.push_back(d + '0');
		reverse(str.begin(), str.end());
		for (int z = 1; z <= i; z++) // 从十位开始就要后面补0
			str.push_back('0');
		ret = add_int(ret, str);// 调用上述两整数相加运算
		d = 0; // 用完复位
	}
	return ret;
}

两个正小数相乘

小数相乘可以利用上面的正整数相乘,回想一下小学时期如何解决小数相乘问题的?

本蒟蒻总结了以下几个步骤:

  1. 计算两数小数点后几位之和
  2. 小数前面的0全部去掉
  3. 整数相乘
  4. 添加小数点

光看文字可能有些抽象,我们来看图片:

 根据上面图片是不是思路更加清晰了呢?下面我们来实现代码操作:

// 小数部分 // 全是正数
string mul(string a, string b)
{
	if (a == "0" || b == "0")//处理特例
		return "0";
	auto it_a = a.find('.'), it_b = b.find('.');
	string a_int = a, b_int = b, a_float, b_float; // 默认a b是整数
	if (it_a != -1)// 找到小数点了就要分成两部分
	{
		a_int = a.substr(0, it_a); // 把整数部分裁下来
		a_float = a.substr(it_a + 1, a.size() - it_a); // 把小数部分裁下来
	}
	if (it_b != -1)
	{
		b_int = b.substr(0, it_b);
		b_float = b.substr(it_b + 1, b.size() - it_b); // 同上
	}
	int n = a_float.size() + b_float.size();
	if (a_int == "0")
		a_int.clear();
	if (b_int == "0")
		b_int.clear();
	a = a_int + a_float, b = b_int + b_float; // 拼起来
	string ret = mul_int(a, b); int nret = ret.size();
	if (n >= nret)// 不够还要补0
	{
		//为什么不用insert? 如果要头插大量0,insert时间复杂度太高
		reverse(ret.begin(), ret.end()); //逆置尾插0
		for (int i = 0; i <= n - nret; i++)
			ret.push_back('0');
		ret.insert(n, 1, '.'); //这里的insert只要挪一个0就行  好好思考为什么
		reverse(ret.begin(), ret.end());
	}
	else
		ret.insert(nret - n, 1, '.');
	return ret;
}

上述代码我将含有小数和整数的数字合并在一起,该函数可以处理各种正数相乘。


乘法总结

乘法一共有以下几种情况,需要注意以下两点:

  1. 两个小数相乘不会向整数位进位
  2. 0乘任何数都为0

乘法需要考虑以下所有情况: 

                                                     乘法所有可能情况
式子形式大小比较结果大小
0 x 任何数0
正数a x 正数b两者都大于0大于0
正数a x 负数ba > 0   b < 0小于0
负数a x 负数ba < 0   b < 0大于0
整数a x 小数b两者都大于0(相当于除法)大于0
小数a x 小数b两者都大于0大于0且小于1

最后附上以上的测试代码,供大家调试:

int main()
{
	string sa, sb, ans; cin >> sa >> sb;
	//ans = add_int(sa, sb);
	//ans = add_float(sa, sb);
	//ans = add(sa, sb);
	//ans = sub_int(sa, sb);
	//ans = sub_float(sa, sb);
	//ans = sub(sa, sb);
	//ans = mul_int(sa, sb);
	ans = mul(sa, sb);
	cout << ans << endl;
	return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1925315.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

链路追踪系列-01.mac m1 安装zipkin

下载地址&#xff1a;https://hub.docker.com/r/openzipkin/zipkin jelexjelexxudeMacBook-Pro zipkin-server % pwd /Users/jelex/Documents/work/zipkin-server 先启动Es: 可能需要先删除 /Users/jelex/dockerV/es/plugins 目录下的.DS_Store 当端口占用时再次启动&#x…

java多线程操作之CAS

1&#xff0c;什么是CAS&#xff1f; CAS&#xff08;Compare-And-Swap&#xff09; 比较并交换&#xff0c;用于实现同步和锁机制。经常配合juc中Atomic相关类进行。Atomic相关类无法解决aba问题。 2&#xff0c;CAS核心思想是什么&#xff1f; 比较和交换。本质上就是乐观锁…

数字电路-建立时间和保持时间详解

对于数字系统而言&#xff0c;建立时间&#xff08;setup time&#xff09;和保持时间&#xff08;hold time&#xff09;是数字电路时序的基础。数字电路系统的稳定性&#xff0c;基本取决于时序是否满足建立时间和保持时间。我自己在初学时一度很难理解清楚他们的概念&#x…

android studio开发

Kotlin 编程简介 | Android Basics Compose - First Android app | Android Developers (google.cn) 这是官网的教程&#xff0c;实现试一下。 之后进入课程 您的第一个 Kotlin 程序 (google.cn) 程序可以被视为一系列指示计算机或设备执行某项操作的指令&#xff0c;

Highlight.js示例

图例 代码在图片后面 点赞❤️关注&#x1f64f;收藏⭐️ 源代码 <!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <meta name"viewport" content"widthdevice-width, initial-scale1.0"…

2024007月份 制作一个 Windows 10 U disk 安装工具

1&#xff0c;下载微软官方 Win10 U盘安装工具 工具名称&#xff1a; MediaCreationTool 下载地址&#xff1a; https://www.microsoft.com/zh-cn/software-download/windows10 2&#xff0c;制作 U盘安装盘 双击打开&#xff0c;并单击“接受” 选中 为另一台电脑创建安…

微信小程序如何实现登陆和注册功能?

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;开发者-曼亿点 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 曼亿点 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a…

python中的os模块和shutil模块

目录 os 1. 获取当前脚本绝对路径 2.获得工作路径&#xff1b; 3.该路径文件和目录 4.walk&#xff0c;查看目录下所有的文件&#xff08;含子孙文件&#xff09; 5.创建文件夹 6.os.makedirs(path) 7.路径拼接 8. 获取当前文件的上级目录 9.判断路径是否存在 10.是…

linux系统查看父子进程

① 查找特定进程的父进程 ps -o pid,ppid,cmd -p 1234 查找进程 PID 为 1234 的父进程 ② 显示所有进程的树状结构 pstree ③ 显示特定进程及其父进程的树状结构 pstree -s 1234 ④ 启动 top 后&#xff0c;按下 c 键可以查看完整命令&#xff0c;按下 f 键进入字段管理界面…

Java | Leetcode Java题解之第233题数字1的个数

题目&#xff1a; 题解&#xff1a; class Solution {public int countDigitOne(int n) {// mulk 表示 10^k// 在下面的代码中&#xff0c;可以发现 k 并没有被直接使用到&#xff08;都是使用 10^k&#xff09;// 但为了让代码看起来更加直观&#xff0c;这里保留了 klong mu…

载波相位定位原理

在现代定位系统中&#xff0c;载波相位测距技术因其高精度而备受青睐。本文将探讨其工作原理&#xff0c;以及如何通过数学模型和算法来校正测量中的误差。 载波相位测距模型 载波相位测距是基于接收卫星发射的载波信号相位变化来进行距离测量的技术。它利用了信号传输过程中…

springboot系列教程(二):Log4j2日志信息(含源码)

一、Log4j2日志简介 日志打印是了解Web项目运行的最直接方式&#xff0c;所以在项目开发中是需要首先搭建好的环境。 1、Log4j2特点 核心特点 相比与其他的日志系统&#xff0c;log4j2丢数据这种情况少&#xff1b;disruptor技术&#xff0c;在多线程环境下&#xff0c;性能…

攻防世界 level3

这道题把附件下载下来发现一个libc(动态链接库)&#xff0c;那这道题估计需要利用libc来确定elf中函数的地址 国际惯例checksec&#xff0c;发现level3没开栈溢出保护和地址随机化&#xff0c;libc全开 拖入32位ida&#xff0c;没发现留后门和system函数&#xff0c;只有个writ…

SCI一区级 | Matlab实现GJO-CNN-LSTM-Multihead-Attention多变量时间序列预测

SCI一区级 | Matlab实现GJO-CNN-LSTM-Mutilhead-Attention多变量时间序列预测 目录 SCI一区级 | Matlab实现GJO-CNN-LSTM-Mutilhead-Attention多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现GJO-CNN-LSTM-Mutilhead-Attention金豺优化算…

OrangePi AIpro在安防领域的深思和实战(旷视科技CNN模型ShuffleNetV1开发案例测试)

一、前言 公司最近有个项目是安防领域的&#xff0c;主要用在边缘结点&#xff0c;虽然已做成形&#xff0c;但是还是存在一些缺陷&#xff0c;例如&#xff1a;算力问题&#xff0c;开发板的成熟问题&#xff0c;已经各种技术的解决方案落地问题。目前我们集成了很多功能&…

在家上网IP地址是固定的吗?

在数字化时代&#xff0c;互联网已成为我们日常生活中不可或缺的一部分。无论是工作、学习还是娱乐&#xff0c;我们都离不开网络的支持。然而&#xff0c;当我们在家中接入互联网时&#xff0c;可能会产生这样一个疑问&#xff1a;在家上网IP地址是固定的吗&#xff1f;下面一…

春招冲刺百题计划|双指针

Java基础复习 Java数组的声明与初始化Java ArrayListJava HashMapJava String 类Java LinkedListJava Deque继承LinkedListJava SetJava 队列优先队列:第二题用到了Java数组划分Java数组转ArrayListString 转数字String 这一部分&#xff0c;代码随想录写得超级好&#xff01…

哪些场景下适合使用人工智能作词软件来写歌词

以下是一些适合使用人工智能作词软件的场景&#xff1a; 软件我们选用“妙笔生词”智能写歌词软件&#xff08;veve299&#xff09;来操作。 1.创作灵感枯竭时&#xff1a;当创作者陷入思维困境&#xff0c;找不到新的创意和方向&#xff0c;人工智能作词软件可以快速提供一些…

Learning vtkjs之hello vtk

学习vtkjs 最近由于工作需要&#xff0c;开始学习vtkjs的相关内容&#xff0c;发现其实在医疗和工业领域&#xff0c;这个vtk的库的example还是非常有帮助&#xff0c;但是实际用的一些开发工具&#xff0c;或者研发生态却没有three的好&#xff0c;也就是能抄写的东西不多&am…

PanTools v1.0.27 多网盘批量管理、遍历分享、转存、重命名、复制...

一款针对多个热门网盘的文件管理、批量分享、批量转存、批量重命名、批量复制、批量链接检测、跨账号移动文件、多账号文件搜索等&#xff0c;支持不同网盘的不同账号的资源文件操作。适用于网站站长、资源爱好者、网盘拉新等&#xff0c;对于管理名下具有多个网盘多个账号具有…