Java中JUC包详解

news2024/11/15 12:16:50

文章目录

    • J.U.C.包
      • Lock
      • ReadWriteLock
      • LockSupport
      • AQS
      • ReentrantLock
        • 对比synchronized
        • 加锁原理
        • 释放锁原理
      • CountDownLatch
      • CyclicBarrier
      • Semaphore

J.U.C.包

java.util.concurrent,简称 J.U.C.。是Java并发工具包,提供了在多线程编程中常用的工具类和框架,帮助开发者简化并发编程的复杂性,并提高程序的性能和可靠性。

java.util.concurrent.locks包下常用的类与接口是JDK1.5后新增的。lock的出现是为了弥补synchronized关键字解决不了的一些问题。例如,当一个代码块被synchronized修饰了,一个线程获取了对应的锁,并执行该代码块时,其他线程只能一直等待,等待获取锁的线程释放锁。如果这个线程因为某些原因被堵塞了,没有释放锁,那么其他线程只能一直等待下去,导致效率很低。因此就需要有一种机制可以不让等待的线程一直无期限地等待下去,比如只等待一定的时间或者能够响应中断,通过Lock就可以办到。

java.util.concurrent包中的锁在locks包下:

在这里插入图片描述

LockReadWriteLock是两大锁的根接口,Lock代表实现类是ReentrantLockReadWriteLock的代表实现类是ReentrantReadWriteLock

除了锁之外,java.util.concurrent包还提供了一些其他的工具类和框架,如SemaphoreCountDownLatchCyclicBarrier等。

Lock

Lock接口在Java的java.util.concurrent.locks包中定义,用于实现更灵活的线程同步机制。与传统的 synchronized 关键字相比,Lock接口提供了更多的操作和更细粒度的控制。在实际使用中,自然是能够替代synchronized关键字的。

Lock接口中的方法:

  • lock()lock()方法是平常使用得最多的一个方法,就是用来获取锁。如果锁已经被另一个线程持有,则当前线程将会被阻塞,直到锁被释放。如果使用lock方法必须主动去释放锁,并且在发生异常时,不会自动释放锁。因此使用Lock必须在try-catch块中进行,并且将释放锁的操作放在finally块中进行,以保证锁一定被被释放,防止死锁的发生。
    public void increment() {
        lock.lock();
        try {
            counter++;
            System.out.println(Thread.currentThread().getName() + ": " + counter);
        } finally {
            lock.unlock();
        }
    }
    
  • lockInterruptibly():获取锁,但与lock()方法不同,它允许线程在等待获取锁的过程中被中断。例如,当两个线程同时通过lock.lockInterruptibly()想获取某个锁时,如果此时线程A获取到了锁,而线程B在等待,那么对线程B调用threadB.interrupt()能够中断线程B的等待过程。当一个线程获取了锁之后,是不会被interrupt()方法中断的。因为interrupt()方法只能中断阻塞过程中的线程而不能中断正在运行过程中的线程。与 synchronized 相比,当一个线程处于等待某个锁的状态,是无法被中断的,只有一直等待下去。
    public class LockInterruptiblyExample {
        private final Lock lock = new ReentrantLock();
        private int counter = 0;
    
        public void increment() throws InterruptedException {
            lock.lockInterruptibly();
            try {
                counter++;
                System.out.println(Thread.currentThread().getName() + ": " + counter);
            } finally {
                lock.unlock();
            }
        }
    
        public static void main(String[] args) {
            LockInterruptiblyExample example = new LockInterruptiblyExample();
    
            Runnable task = () -> {
                try {
                    example.increment();
                } catch (InterruptedException e) {
                    System.out.println(Thread.currentThread().getName() + " was interrupted.");
                }
            };
    
            Thread thread1 = new Thread(task);
            Thread thread2 = new Thread(task);
    
            thread1.start();
            thread2.start();
            thread2.interrupt(); // Interrupt the second thread
        }
    }
    
  • trylock():该方法的作用是尝试获取锁,如果锁可用则返回true,不可用则返回false
    public class TryLockExample {
        private final Lock lock = new ReentrantLock();
        private int counter = 0;
    
        public void increment() {
            if (lock.tryLock()) {
                try {
                    counter++;
                    System.out.println(Thread.currentThread().getName() + ": " + counter);
                } finally {
                    lock.unlock();
                }
            } else {
                System.out.println(Thread.currentThread().getName() + " could not acquire the lock.");
            }
        }
    
        public static void main(String[] args) {
            TryLockExample example = new TryLockExample();
    
            Runnable task = example::increment;
    
            Thread thread1 = new Thread(task);
            Thread thread2 = new Thread(task);
    
            thread1.start();
            thread2.start();
        }
    }
    
  • newConditionLock接口提供了方法Condition newCondition();,返回的Condition类型也是一个接口,Condition提供了更细粒度的线程通信控制,用于实现复杂的线程间协作。类似于Object类中的wait()notify()notifyAll()方法。
    • await():当前线程等待,直到被通知或被中断。
    • signal():唤醒一个等待线程。如果所有线程都在等待,则任意选择一个线程唤醒。
    • signalAll():唤醒所有等待线程。
    public class ConditionExample {
      private final Lock lock = new ReentrantLock();
      private final Condition condition = lock.newCondition();
      private int counter = 0;
    
      public void increment() {
          lock.lock();
          try {
              while (counter == 0) {
                  condition.await();
              }
              counter++;
              System.out.println(Thread.currentThread().getName() + ": " + counter);
              condition.signal();
          } catch (InterruptedException e) {
              Thread.currentThread().interrupt();
          } finally {
              lock.unlock();
          }
      }
    
      public void reset() {
          lock.lock();
          try {
              counter = 0;
              condition.signal();
          } finally {
              lock.unlock();
          }
      }
    
      public static void main(String[] args) {
          ConditionExample example = new ConditionExample();
    
          Runnable incrementTask = example::increment;
          Runnable resetTask = example::reset;
    
          Thread thread1 = new Thread(incrementTask);
          Thread thread2 = new Thread(resetTask);
    
          thread1.start();
          thread2.start();
      }
    }
    

ReadWriteLock

ReadWriteLock接口提供了一种用于在某些情况下可以显著提升并发性能的锁定机制。它允许多个读线程同时访问共享资源,但对写线程使用排他锁,这样读操作不会互相阻塞,而写操作会阻塞所有其他操作。

该接口有两个方法:

  • readLock():返回用于读取操作的锁。
  • writeLock():返回用于写入操作的锁。

ReadWriteLock管理一组锁,一个是只读的锁,一个是写锁。Java并发库中ReetrantReadWriteLock实现了ReadWriteLock接口并添加了可重入的特性。对于ReetrantReadWriteLock其读锁是共享锁而写锁是独占锁,读锁的共享可保证并发读是非常高效的。需要注意的是,读写、写读、写写的过程是互斥的,只有读读不是互斥的。

public class ReadWriteLockExample {
    private final ReadWriteLock readWriteLock = new ReentrantReadWriteLock();
    private final Lock readLock = readWriteLock.readLock();
    private final Lock writeLock = readWriteLock.writeLock();
    private int value = 0;

    // 读操作
    public int readValue() {
        readLock.lock();
        try {
            System.out.println(Thread.currentThread().getName() + " Reading: " + value);
            return value;
        } finally {
            readLock.unlock();
        }
    }

    // 写操作
    public void writeValue(int value) {
        writeLock.lock();
        try {
            this.value = value;
            System.out.println(Thread.currentThread().getName() + " Writing: " + value);
        } finally {
            writeLock.unlock();
        }
    }

    public static void main(String[] args) {
        ReadWriteLockExample example = new ReadWriteLockExample();

        Runnable readTask = () -> {
            for (int i = 0; i < 5; i++) {
                example.readValue();
                try {
                    Thread.sleep(100); // 模拟读取时间
                } catch (InterruptedException e) {
                    Thread.currentThread().interrupt();
                }
            }
        };

        Runnable writeTask = () -> {
            for (int i = 0; i < 5; i++) {
                example.writeValue(i);
                try {
                    Thread.sleep(150); // 模拟写入时间
                } catch (InterruptedException e) {
                    Thread.currentThread().interrupt();
                }
            }
        };

        Thread thread1 = new Thread(readTask);
        Thread thread2 = new Thread(readTask);
        Thread thread3 = new Thread(writeTask);

        thread1.start();
        thread2.start();
        thread3.start();
    }
}

LockSupport

LockSupportjava.util.concurrent.locks包下的一个工具类。它提供了最基本的线程阻塞和解除阻塞的功能,通常用来构建更高级的同步机制。其中有两个重要的方法,通过park()unpark()方法来实现阻塞和唤醒线程的操作,可以理解为wait()notify()的加强版。

  • park():阻塞当前线程,直到线程被其他线程中断或调用unpark()方法唤醒。
  • unpark():唤醒指定线程。如果该线程尚未阻塞,则下一次调用park()方法时不会阻塞。

传统等待唤醒机制是使用Object中的wait()方法让线程等待,使用Object中的notify()方法唤醒线程。或者使用JUC包中Conditionawait()方法让线程等待,使用signal()方法唤醒线程。

wait()notify()/await()signal()方法必须要在同步块或同步方法里且成对出现使用,如果没有在synchronized代码块使用则抛出java.lang.IllegalMonitorStateException。必须先wait()/await()notify()/signal(),如果先notify()wait()会出现另一个线程一直处于等待状态。

LockSupport对比传统等待唤醒机制,能够解决传统等待唤醒问题。LockSupport使用的是许可机制,而wait/notify使用的是监视器机制。每个线程最多只有一个许可,调用park()会消耗一个许可,如果有许可则会直接消耗这张许可然后退出,如果没有许可就堵塞等待许可可用。调用unpark()则会增加一个许可,连续调用多次unpark()和调用一次一样,只会增加一个许可。而且LockSupportpark()unpark()是可中断的,且无需在同步块中使用。

public class LockSupportProducerConsumer {
    private static Object resource = null;

    public static void main(String[] args) {
        Thread consumer = new Thread(() -> {
            System.out.println("Consumer waiting for resource");
            while (resource == null) {
                LockSupport.park();
            }
            System.out.println("Consumer consumed resource");
        });

        Thread producer = new Thread(() -> {
            try {
                Thread.sleep(2000); // Simulate some work with sleep
            } catch (InterruptedException e) {
                Thread.currentThread().interrupt();
            }
            resource = new Object();
            System.out.println("Producer produced resource");
            LockSupport.unpark(consumer);
        });

        consumer.start();
        producer.start();
    }
}

LockSupport类使用了一种名为Permit的概念来做到阻塞和唤醒线程的功能,每个线程都有一个PermitPermit只有两个值1和0,默认是0。官网解释LockSupport是用来创建锁和同步其他类的基本线程的阻塞原语。LockSupport最终调用的Unsafe中的native方法。以unpark、park为例:

public static void unpark(Thread thread) {
    if (thread != null)
        UNSAFE.unpark(thread);
}

public static void park(Object blocker) {
    Thread t = Thread.currentThread();
    setBlocker(t, blocker);
    UNSAFE.park(false, 0L);
    setBlocker(t, null);
}

AQS

AQS是指java.util.concurrent.locks包下的一个抽象类AbstractQueuedSynchronizer译为,抽象的队列同步器

同步器是在多线程编程中用于管理线程间协作和同步的机制。同步器通常用于协调线程的执行顺序、控制共享资源的访问以及管理线程的状态。常见的同步器包括:CountDownLatch、CyclicBarrier、Semaphore等。

在JUC包下,能够看到有许多类都继承了AQS,如ReentrantLockCountDownLatchReentrantReadWriteLockSemaphore

在这里插入图片描述

AQS是用来构建锁或其它同步器组件的重要基础框架,以及是整个JUC体系的基石,它用于实现依赖先进先出队列的阻塞锁和相关的同步器。
AQS提供了一个框架,用于创建在等待队列中具有独占或共享模式的同步器。
在这里插入图片描述

AQS可以理解为一个框架,因为它定义了一些JUC包下常用"锁"的标准。AQS简单来说,包含一个status和一个队列。status保存线程持有锁的状态,用于判断该线程获没获取到锁,没获取到锁就去队列中排队。AQS中的队列,是指CLH队列(Craig, Landin, and Hagerste[三个人名组成])锁队列的变体,是一个双向队列。队列中的元素即Node结点,每个Node中包含:头结点、尾结点、等待状态、存放的线程等。Node遵循从尾部入队,从头部出队的规则,即先进先出原则。

在这里插入图片描述

在多线程并发环境下,使用lock加锁,当处在加锁与解锁之间的代码,只能有一个线程来执行。这时候其他线程不能够获取锁,如果不处理线程就会造成了堵塞。在AQS框架中,会将暂时获取不到锁的线程加入到队列里,这个队列就是AQS的抽象表现。它会将这些线程封装成队列的结点,通过CAS、自旋以及LockSupport.park()的方式,维护state变量的状态,使并发达到同步的效果。

ReentrantLock

ReentrantLock译为可重入锁,是一种锁的实现类,它提供了比synchronized关键字更广泛的锁定操作选项,提供了公平锁和非公平锁两种模式。

public class ReentrantLockExample {
    private final ReentrantLock lock = new ReentrantLock();
    private int counter = 0;

    public void increment() {
        lock.lock();
        try {
            counter++;
            System.out.println(Thread.currentThread().getName() + " incremented counter to " + counter);
        } finally {
            lock.unlock();
        }
    }

    public static void main(String[] args) {
        ReentrantLockExample example = new ReentrantLockExample();

        Runnable task = () -> {
            for (int i = 0; i < 5; i++) {
                example.increment();
                try {
                    Thread.sleep(100);
                } catch (InterruptedException e) {
                    Thread.currentThread().interrupt();
                }
            }
        };

        Thread thread1 = new Thread(task);
        Thread thread2 = new Thread(task);

        thread1.start();
        thread2.start();
    }
}
对比synchronized

Java提供了两种锁机制来控制多个线程对共享资源的互斥访问,第一个是JVM实现的 synchronized,而另一个是 JDK 实现的 ReentrantLock

比较synchronizedReentrantLock
锁的实现JVM实现JDK实现
性能synchronized 与 ReentrantLock 大致相同synchronized 与 ReentrantLock 大致相同
等待可中断不可中断可中断
公平锁非公平锁默认非公平锁,也可以是公平锁
锁绑定多个条件不能绑定可以同时绑定多个Condition对象
可重入可重入锁可重入锁
释放锁自动释放锁调用 unlock() 释放锁
等待唤醒搭配wait()、notify或notifyAll()使用搭配await()/singal()使用

synchronizedReentrantLock最直观的区别就是,在使用ReentrantLock的时候需要调用unlock方法释放锁,所以为了保证一定释放,通常都是和 try-finally 配合使用的。在实际开发中除非需要使用ReentrantLock的高级功能,否则优先使用synchronized。这是因为synchronized是JVM实现的一种锁机制,JVM原生地支持它,而ReentrantLock不是所有的JDK版本都支持。并且使用synchronized不用担心没有释放锁而导致死锁问题,因为JVM会确保锁的释放。

加锁原理

ReentrantLock原理用到了AQS,而AQS包括一个线程队列和一个state变量,state,它的值有3种状态:没占用是0,占用了是1,大于1是可重入锁。所以ReentrantLock加锁过程,可以简单理解为state变量的变化。

在多线程并发环境下,某个线程持有锁,将state由0设置为1,如果有其他线程再次进入,线程则会经过一系列判断,然后构建Node结点,最终形成双向链表结构。最后执行LockSupport.park()方法,将等待的线程挂起,如果当前持有锁的线程释放了锁,则将state变量设置为0,调用LockSpoort.unpark()方法指定唤醒等待队列中的某个线程。

在这里插入图片描述

ReentrantLock加锁有两种形式,默认是非公平锁,但可以通过构造方法来指定为公平锁。

public static void main(String[] args) {
    ReentrantLock reentrantLock = new ReentrantLock(true);
}
//⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇
/**
 * Creates an instance of {@code ReentrantLock} with the
 * given fairness policy.
 *
 * @param fair {@code true} if this lock should use a fair ordering policy
 */
public ReentrantLock(boolean fair) {
    sync = fair ? new FairSync() : new NonfairSync();
}

无论是公平锁还是非公平锁,由于用到了AQS框架,所以底层实现的逻辑大致是差不多的,ReentrantLock加锁核心方法调用栈:

lock()
    --> acquire()
    --> tryAcquire()
    --> addWaiter()
    --> acquireQueued()
    --> selfInterrupt()

公平锁还是非公平锁虽然大致逻辑差不多,但是区别总是有的,总的来说非公平锁比非公平锁在代码里面多了几行判断。

// ===========重写 lock 方法对比===========
    // 公平锁
    final void lock() {
        acquire(1);
    }

    // 非公平锁
    final void lock() {
        if (compareAndSetState(0, 1))
            setExclusiveOwnerThread(Thread.currentThread());
        else
            acquire(1);
    }
public final void acquire(int arg) {
    if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
        selfInterrupt();
}
// ===========重写 tryAcquire 方法对比===========
// 公平锁
protected final boolean tryAcquire(int acquires) {
    final Thread current = Thread.currentThread();
    int c = getState();
    if (c == 0) {
        if (!hasQueuedPredecessors() &&
            compareAndSetState(0, acquires)) {
            setExclusiveOwnerThread(current);
            return true;
        }
    }
    else if (current == getExclusiveOwnerThread()) {
        int nextc = c + acquires;
        if (nextc < 0)
            throw new Error("Maximum lock count exceeded");
        setState(nextc);
        return true;
    }
    return false;
}

// 非公平锁
protected final boolean tryAcquire(int acquires) {
    return nonfairTryAcquire(acquires);
}

final boolean nonfairTryAcquire(int acquires) {
    final Thread current = Thread.currentThread();
    int c = getState();
    if (c == 0) {
        if (compareAndSetState(0, acquires)) {
            setExclusiveOwnerThread(current);
            return true;
        }
    }
    else if (current == getExclusiveOwnerThread()) {
        int nextc = c + acquires;
        if (nextc < 0) // overflow
            throw new Error("Maximum lock count exceeded");
        setState(nextc);
        return true;
    }
    return false;
}

在重写的tryAcquire方法里,公平锁在获取同步状态时多了一个限制条件即hasQueuedPredecessors()方法。该方法作用是保证等待队列中的线程按照从头到尾的顺序排队获取锁。举个例子,目前队列中有两个线程A、B,线程A,在线程B的前面。在当前线程释放锁的时候,线程B获取到了锁,该方法会判断当前头结点的下一个结点中存放的线程跟当前线程是否相同。在这个例子中头结点的下一个结点存放的线程是傀儡结点线程为null,而当前线程是线程B,所以返回true,回到上一个方法true取反就是false所以获取锁失败。

public final boolean hasQueuedPredecessors() {
    // The correctness of this depends on head being initialized
    // before tail and on head.next being accurate if the current
    // thread is first in queue.
    Node t = tail; // Read fields in reverse initialization order
    Node h = head;
    Node s;
    return h != t &&
        ((s = h.next) == null || s.thread != Thread.currentThread());
}

在执行完tryAcquire方法之后就会执行addWaiter方法。addWaiter方法作用为,当第一次将等待的线程添加到队列时,先会调用enq方法。如果不是第一次调用,即尾结点不为空,队列中已经有了其他线程结点,则会直接将当前线程的前结点指向尾结点,即队列中最后一个线程结点。然后用CAS将前一个结点的下一个结点指向当前结点,形成链表结构,最后返回添加到队列中的结点。

private Node addWaiter(Node mode) {
    Node node = new Node(Thread.currentThread(), mode);
    // Try the fast path of enq; backup to full enq on failure
    Node pred = tail;
    if (pred != null) {
        node.prev = pred;
        if (compareAndSetTail(pred, node)) {
            pred.next = node;
            return node;
        }
    }
    enq(node);
    return node;
}

enq方法作用是将等待获取锁的线程封装成Node结点,并将Node结点串联起来,形成双向链表结构,简而言之就是将线程添加到等待队列中去。 该方法运用自旋机制,如果添加的结点为第一个结点,则会在第一个实际结点之前,生成一个“傀儡结点”。添加的第一个结点的前结点指向傀儡结点,尾结点指向实际结点。傀儡结点的后结点则指向添加的第一个结点。

private Node enq(final Node node) {
    for (;;) {
        Node t = tail;
        if (t == null) { // Must initialize
            if (compareAndSetHead(new Node()))
                tail = head;
        } else {
            node.prev = t;
            if (compareAndSetTail(t, node)) {
                t.next = node;
                return t;
            }
        }
    }
}

之后执行acquireQueued方法,该方法用到了自旋机制。首先判断当前结点是否为头结点,如果是头结点,就让头结点中的线程尝试获取锁。如果不是头结点,执行shouldParkAfterFailedAcquire方法尝试让当前线程挂起,直到持有锁的线程释放锁,唤醒等待的线程之后再去尝试获取锁。

final boolean acquireQueued(final Node node, int arg) {
    boolean failed = true;
    try {
        boolean interrupted = false;
        for (;;) {
            final Node p = node.predecessor();
            if (p == head && tryAcquire(arg)) {
                setHead(node);
                p.next = null; // help GC
                failed = false;
                return interrupted;
            }
            if (shouldParkAfterFailedAcquire(p, node) &&
                parkAndCheckInterrupt())
                interrupted = true;
        }
    } finally {
        if (failed)
            cancelAcquire(node);
    }
}

shouldParkAfterFailedAcquire方法,该方法首先判断上一个结点的waitStatus。如果该队列只有一个结点,则上一个结点为头结点,此时头结点的waitStatus=0,经过该方法会将上一个结点的waitStatus通过CAS,设置为-1。因为最外部是一个自旋机制,会一直循环,所以当第二次进入该方法,则会直接返回true。返回true意味着当前线程将进入堵塞状态,会执行parkAndCheckInterrupt()方法。

private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
    int ws = pred.waitStatus;
    if (ws == Node.SIGNAL)
        return true;
    if (ws > 0) {
        do {
            node.prev = pred = pred.prev;
        } while (pred.waitStatus > 0);
        pred.next = node;
    } else {
        compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
    }
    return false;
}

parkAndCheckInterrupt方法,底层是调用LockSupport.park()方法让线程挂起,直到持有锁的线程将它们唤醒。

private final boolean parkAndCheckInterrupt() {
    LockSupport.park(this);
    return Thread.interrupted();
}

ReentrantLock其加锁核心方法为acquire方法。最终执行完毕,下面的if表达式返回true,则执行selfInterrupt方法中断线程。

public final void acquire(int arg) {
    if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
        selfInterrupt();
}

ReentrantLock在采用非公平锁构造时,首先检查锁状态,如果锁可用,直接通过CAS设置成持有状态,且把当前线程设置为锁的拥有者。如果当前锁已经被持有,那么接下来进行可重入检查,如果可重入,需要为锁状态加上请求数。如果不属于上面两种情况,那么说明锁是被其他线程持有,当前线程应该放入等待队列。

在放入等待队列的过程中,首先要检查队列是否为空队列,如果为空队列,需要创建虚拟的头节点,然后把对当前线程封装的节点加入到队列尾部。由于设置尾部节点采用了CAS,为了保证尾节点能够设置成功,ReentrantLock采用了无限循环的方式,直到设置成功为止。

在完成放入等待队列任务后,则需要维护节点的状态,以及及时清除处于Cancel状态的节点,来帮助垃圾收集器及时回收。如果当前节点之前的节点的等待状态小于1,说明当前节点之前的线程处于等待状态,那么当前节点的线程也应处于等待状态。通过LockSupport类实现等待挂起的功能。当等待的线程被唤起后,检查中断状态,如果处于中断状态,那么需要中断当前线程。

释放锁原理

在这里插入图片描述

ReentrantLock释放锁调用栈:

unlock()
    --> release()
    --> tryRelease()
    --> unparkSuccessor()

release方法中如果tryRelease方法返回true,则判断队列头结点中的waitStatus,如果不等于0则执行unparkSuccessor方法,按顺序唤醒队列中等待的线程。

public final boolean release(int arg) {
    if (tryRelease(arg)) {
        Node h = head;
        if (h != null && h.waitStatus != 0)
            unparkSuccessor(h);
        return true;
    }
    return false;
}

tryRelease方法作用是尝试释放锁,首先获取当前持有锁线程的state变量并使其减1。如果减1后的state值等于0,则认为该线程马上要释放锁,将当前持有锁的线程设置为null,将0设置为state的新值并返回true

protected final boolean tryRelease(int releases) {
    int c = getState() - releases;
    if (Thread.currentThread() != getExclusiveOwnerThread())
        throw new IllegalMonitorStateException();
    boolean free = false;
    if (c == 0) {
        free = true;
        setExclusiveOwnerThread(null);
    }
    setState(c);
    return free;
}

unparkSuccessor方法用于唤醒等待队列中的后继节点。首先判断当前节点的等待状态如果小于0,将其设置为0。然后从尾部开始向前查找,直到找到一个有效的后继节点,如果找到一个有效的后继节点,唤醒其线程。

private void unparkSuccessor(Node node) {
    int ws = node.waitStatus;
    if (ws < 0)
        compareAndSetWaitStatus(node, ws, 0);

    Node s = node.next;
    if (s == null || s.waitStatus > 0) {
        s = null;
        for (Node t = tail; t != null && t != node; t = t.prev)
            if (t.waitStatus <= 0)
                s = t;
    }
    if (s != null)
        LockSupport.unpark(s.thread);
}

CountDownLatch

count down latch直译为倒计时门闩,也可以叫做闭锁。

门闩,汉语词汇。拼音:mén shuān 释义:指门关上后,插在门内使门推不开的滑动插销。

CountDownLatchJDK文档注释:

A synchronization aid that allows one or more threads to wait until a set of operations being performed in other threads completes.

文档大意:一种同步辅助工具,允许一个或多个线程等待,直到在其他线程中执行的一组操作完成。

CountDownLatch是Java中的一个同步工具类,用于使一个或多个线程等待其他线程完成一组操作。CountDownLatch通过一个计数器实现,该计数器的初始值由构造方法指定,底层还是AQS。

public CountDownLatch(int count) {
    if (count < 0) throw new IllegalArgumentException("count < 0");
    this.sync = new Sync(count);
}

每调用一次countDown()方法,计数器减一,当计数器到达零时,所有因调用await()方法而等待的线程都将被唤醒。举个例子,晚上教室关门,要等同学都离开之后,再关门:

public class MainTest {
    public static void main(String[] args) throws InterruptedException {
        CountDownLatch countDownLatch = new CountDownLatch(7);
        for (int i = 0; i < 7; i++){
            new Thread(() -> {
                System.out.println("同学"+Thread.currentThread().getName() + "\t 离开");
                countDownLatch.countDown();
            },String.valueOf(i)).start();
        }
        countDownLatch.await();
        System.out.println("关门...");
    }
}

CyclicBarrier

Cyclic Barrier直译为循环屏障,是Java中关于线程的计数器,也可以叫它栅栏。

CyclicBarrierJDK文档注释:

A synchronization aid that allows a set of threads to all wait for each other to reach a common barrier point. CyclicBarriers are useful in programs involving a fixed sized party of threads that must occasionally wait for each other. The barrier is called cyclic because it can be re-used after the waiting threads are released.

文档大意:一种同步辅助工具,允许一组线程相互等待到达一个共同的障碍点。cyclicbarrier在包含固定大小的线程组的程序中非常有用,这些线程必须偶尔相互等待。这个屏障被称为cyclic,因为它可以在等待的线程被释放后被重用。

它与CountDownLatch的作用是相反的,CountDownLatch是定义一个次数,然后减直到减到0,再去执行一些任务。而CyclicBarrier是定义一个上限次数,从零开始加,直到加到定义的上限次数,再去执行一些任务。CountDownLatch的计数器只能使用一次,而CyclicBarrier的计数器可以使用reset()方法重置,可以使用多次,所以CyclicBarrier能够处理更为复杂的场景。例如,凑齐七颗龙珠召唤神龙:

public class MainTest {
    public static void main(String[] args) {
        CyclicBarrier cyclicBarrier = new CyclicBarrier(7,() -> {
            System.out.println("凑齐七颗龙珠,召唤神龙!");
        });
        for (int i = 1; i <= 7;i++){
            new Thread(() -> {
                System.out.println("拿到"+Thread.currentThread().getName() + "星龙珠");
                try {
                    cyclicBarrier.await();
                } catch (InterruptedException | BrokenBarrierException e) {
                    e.printStackTrace();
                }
            },String.valueOf(i)).start();
        }
    }
}

CyclicBarrier要做的事情是,让一组线程达到一个屏障时被阻塞,直到最后一个线程达到屏障时,所有被屏障拦截的线程才会继续干活,线程进入屏障通过CyclicBarrier.await()方法。

在这里插入图片描述

CyclicBarrier是基于ReentrantLock实现的,其底层也是基于AQS。CyclicBarrier通过一个内部的计数器和一个锁来实现线程间的协调。当所有线程都调用await方法时,计数器递减,当计数器为零时,所有等待的线程将被唤醒,并重置计数器,以便下一次使用。

Semaphore

Semaphore译为信号量,有时被称为信号灯。可以用来控制同时访问特定资源的线程数量,通过协调各个线程,保证合理的使用资源。信号量主要用于两个目的,一个是用于多个共享资源的互斥使用,另一个用于并发线程数量的控制。

SemaphoreJDK文档注释:

A counting semaphore. Conceptually, a semaphore maintains a set of permits. Each {@link #acquire} blocks if necessary until a permit is available, and then takes it. Each {@link #release} adds a permit, potentially releasing a blocking acquirer.

文档大意:Semaphore是一个计数信号量。从概念上讲,信号量维护一组许可。如果需要,每个acquire方法调用会阻塞,直到有一个许可可用,然后获取许可。每个release方法调用会添加一个许可,可能会释放一个阻塞的线程。实际上,Semaphore并没有维护实际的许可对象,只是维护一个可用许可的计数,并根据计数执行相应的操作。

举个例子,九辆车抢三个车位,车位满了之后只有等里面的车离开停车场外面的车才可以进入。

public class MainTest {
    public static void main(String[] args) {
        
        Semaphore semaphore = new Semaphore(3);
        
        for (int i = 1; i <= 9; i++) {
            new Thread(() -> {
                try {
                    semaphore.acquire();
                    System.out.println("第" + Thread.currentThread().getName() + "辆车,抢到车位");
                    Thread.sleep(2000);
                    System.out.println("停车结束.");
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }finally {
                    semaphore.release();
                }
            }, String.valueOf(i)).start();
        }
        
    }
}

Semaphore通过一个计数器和一个队列来管理许可和等待线程。它依赖于AQS来实现同步逻辑。Semaphore是用来保护一个或者多个共享资源的访问,Semaphore内部维护了一个计数器,其值为可以访问的共享资源的个数。一个线程要访问共享资源,先获得信号量,如果信号量的计数器值大于1,意味着有共享资源可以访问,则使其计数器值减去1,再访问共享资源。如果计数器值为0,线程进入休眠。当某个线程使用完共享资源后,释放信号量,并将信号量内部的计数器加1,之前进入休眠的线程将被唤醒并再次试图获得信号量。

Semaphore的核心方法为:

  • acquire():获取一个许可,如果没有可用的许可,当前线程将被阻塞,直到有许可可用。当调用semaphore.acquire()方法时,当前线程会尝试去同步队列获取一个令牌,获取令牌的过程也就是使用原子操作去修改同步队列的state,获取一个令牌则修改为state=state-1。当计算出来的state<0,则代表令牌数量不足,此时会创建一个Node节点加入阻塞队列,挂起当前线程。当计算出来的state>=0,则代表获取令牌成功。
  • release():释放一个许可,将其返回到Semaphore。当调用semaphore.release()方法时,线程会尝试释放一个令牌,释放令牌的过程也就是把同步队列的state修改为state=state+1的过程。释放令牌成功之后,同时会唤醒同步队列中的一个线程。被唤醒的节点会重新尝试去修改state=state-1的操作,如果state>=0则获取令牌成功,否则重新进入阻塞队列,挂起线程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1925187.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

实战检验:Orange Pi AIpro AI开发板的性能测试与使用体验

文章目录 前言Orange Pi AIpro 简介Orange Pi AIpro 体验将Linux镜像烧录到TF卡YOLO识别视频中物体肺部CT识别 Orange Pi AIpro 总结 前言 Orange Pi AIpro&#xff0c;作为首款基于昇腾技术的AI开发板&#xff0c;它集成了高性能图形处理器&#xff0c;配备8GB/16GB LPDDR4X内…

MySQL复合查询(重点)

前面我们讲解的mysql表的查询都是对一张表进行查询&#xff0c;在实际开发中这远远不够。 基本查询回顾 查询工资高于500或岗位为MANAGER的雇员&#xff0c;同时还要满足他们的姓名首字母为大写的J mysql> select * from emp where (sal>500 or jobMANAGER) and ename l…

强化学习:bellman方程求解state value例题

最近在学习强化学习相关知识&#xff0c;强烈推荐西湖大学赵世钰老师的课程&#xff0c;讲解的非常清晰流畅&#xff0c;一路学习下来令人身心大爽&#xff0c;感受数学抽丝剥茧&#xff0c;化繁为简的神奇魅力。 bellman方程还是比较容易理解的&#xff1a;当前状态下的state …

嵌入式linux系统中GDB调试器详解

前言 GDB全称GNU symbolic debugger,它是诞生于GNU开源组织的(同时诞生的还有 GCC、Emacs 等)UNIX及UNIX-like下的调试工具,是Linux下最常用的程序调试器,GDB 支持调试多种编程语言编写的程序,包括C、C++、Go、Objective-C、OpenCL、Ada 等。但是在实际应用中,GDB 更常…

linux_进程周边知识——理解冯诺依曼体系结构

前言&#xff1a; 本篇内容是为了让友友们较好地理解进程的概念&#xff0c; 而在真正了解进行概念之前&#xff0c; 要先了解一下冯诺依曼体系结构。 所以博主会先对冯诺伊曼体系结构进行解释&#xff0c; 然后再讲解进程的概念。 ps&#xff1a; 本篇内容适合了解一些linux指…

github中下载zip后,本地仓库如何与github上的项目相关联

有时候网速问题&#xff0c;git clone 太慢&#xff0c;就直接下载zip文件&#xff0c;然后再进行关联 1、下载zip 2、解压&#xff0c;把文件夹名称中-main去掉 3、进行关联 cd <repo> git init git add . git remote add origin https://github.com/<user>/&l…

springboot在线教育平台-计算机毕业设计源码68562

摘要 在数字化时代&#xff0c;随着信息技术的飞速发展&#xff0c;在线教育已成为教育领域的重要趋势。为了满足广大学习者对于灵活、高效学习方式的需求&#xff0c;基于Spring Boot的在线教育平台应运而生。Spring Boot以其快速开发、简便部署以及良好的可扩展性&#xff0c…

第一个基于FISCOBCOS的前后端项目(发行转账)(已开源)

本文旨在介绍一个简单的基于fiscobcos的前后端网站应用。Springbootjs前后端不分离。 所使用到的合约也是一个最基本的。首先您需要知道的是完整项目分为三部分&#xff0c;1是区块链平台webase搭建&#xff08;此项目使用节点前置webase-front即可&#xff09;&#xff0c;2是…

帕金森病患者在日常饮食中需要注意哪些特殊的营养需求?

帕金森病患者的特殊营养需求 帕金森病患者在日常饮食中需要特别注意以下几个方面的营养需求&#xff1a; 蛋白质摄入&#xff1a;由于帕金森病药物可能与蛋白质竞争同一种转运蛋白进入大脑&#xff0c;因此建议将蛋白质的摄入量分散在一天中的多餐中&#xff0c;避免集中在单一…

【python学习】多线程编程的背景、定义、特点、优缺点、使用场景和示例以及和单线程的区别

引言 随着计算机技术的发展&#xff0c;多核处理器已经成为了主流,为了充分利用多核处理器带来的并行计算能力&#xff0c;提高程序的执行效率和响应速度&#xff0c;多线程编程变得尤为重要 Python作为一种高级编程语言&#xff0c;提供了多线程编程的支持&#xff0c;允许开发…

力扣 24两两交换链表中节点

画图 注意有虚拟头结点 注意判断时先判断cur->next ! nullptr,再判断cur->next->next ! nullptr 注意末尾返回dumyhead->next&#xff0c;用新建result指针来接并返回 class Solution { public:ListNode* swapPairs(ListNode* head) {ListNode *dummyhead new …

【2024_CUMCM】时间序列1

目录 概念 时间序列数据 时期和时点时间序列 数值变换规律 长期趋势T 季节趋势S 循环变动C 不规则变动I 叠加和乘积模型 叠加模型 相互独立 乘积模型 相互影响 注 spss缺失值填补 简单填补 五种填补方法 填补原则 1.随机缺失 2.完全随机缺失 3.非随机缺失…

WGCLOUD登录页面支持输入验证码吗

支持的 v3.5.3版本开始&#xff0c;WGCLOUD支持在登录页面配置输入验证码&#xff0c;我们可以根据自己的场景需要&#xff0c;配置是否在登录页面显示验证码&#xff0c;如下说明 登录页面添加验证码说明 - WGCLOUD

酒店管理系统小程序的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;用户管理&#xff0c;酒店管理员管理&#xff0c;房间类型管理&#xff0c;房间信息管理&#xff0c;订单信息管理&#xff0c;系统管理 微信端账号功能包括&#xff1a;系统首页&#xff0c;房间信息…

CycleGAN深度学习项目

远程仓库 leftthomas/CycleGAN: A PyTorch implementation of CycleGAN based on ICCV 2017 paper "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks" (github.com) 运行准备 Anaconda 安装需要的库 指令 pip install panda…

AI时代:探索个人潜能的新视角

文章目录 Al时代的个人发展1 AI的高速发展意味着什么1.1 生产力大幅提升1.2 生产关系的改变1.3 产品范式1.4 产业革命1.5 Al的局限性1.5.1局限一:大模型的幻觉 1.5.2 局限二&#xff1a;Token 2 个体如何应对这种改变?2.1 职场人2.2 K12家长2.3 大学生2.4 创业者 3 人工智能发…

万界星空科技商业开源MES系统全面解析

万界星空科技商业开源MES源码可拖拽式数据大屏 开源MES系统具有定制化、节省成本、开放性和适应性等优势和特点&#xff0c;可以帮助企业更好地管理生产流程。万界星空MES制造执行系统的Java开源版本&#xff0c;为制造业企业提供了全面的生产管理解决方案。万界星空科技的目标…

从零开始做题:满屏的QR

题目 给出一张png图片 解题 import os import re import cv2 import argparse import itertools import numpy as npparser argparse.ArgumentParser() parser.add_argument(-f, typestr, defaultNone, requiredTrue,help输入文件名称) parser.add_argument(-p, typestr, d…

[Vulnhub] Stapler wp-videos+ftp+smb+bash_history权限提升+SUID权限提升+Kernel权限提升

信息收集 IP AddressOpening Ports192.168.8.106TCP:21,22,53,80,123,137,138,139,666,3306, Using Nmap for scanning: $ nmap -p- 192.168.8.106 --min-rate 1000 -sC -sV The results are as follows: PORT STATE SERVICE VERSION 20/tcp closed ftp-data…

昇思25天学习打卡营第20天 | 基于MindNLP+MusicGen生成自己的个性化音乐

基于MindNLPMusicGen生成个性化音乐 实验简介 MusicGen是Meta AI提出的音乐生成模型&#xff0c;能够根据文本描述或音频提示生成高质量音乐。该模型基于Transformer结构&#xff0c;分为三个阶段&#xff1a;文本编码、音频token预测和音频解码。此实验将演示如何使用MindSpo…