【2024_CUMCM】时间序列1

news2024/11/13 23:20:23

目录

概念

时间序列数据

时期和时点时间序列

数值变换规律

长期趋势T

季节趋势S

循环变动C

不规则变动I

叠加和乘积模型

叠加模型 相互独立

乘积模型 相互影响

注 

spss缺失值填补

简单填补

五种填补方法 

填补原则

1.随机缺失

2.完全随机缺失

3.非随机缺失

定义时间变量

时序图 

季节性分解

加法

乘法

时间序列步骤


引言:时间序列也称动态序列,是指将某种现象的指标数值按照时间顺序排列而成的数值序列。时间序列分析大致可分成三大部分,分别是描述过去、分析规律和预测未来。

概念

时间序列数据

对同一对象在不同时间连续观察所得到的数据

时间序列由两个要素组成,包括时间要素(年月日时分秒)和数值要素。

时期和时点时间序列

时间序列根据上面两个要素的不同,分为时期时间序列和时点时间序列。

时期时间序列中,数值要素反映现象在一段时间内的发展结果

时期时间序列中,数值要素反映现象在一个时间点的瞬间水平

时期序列可加,时点序列不可加。
时期序列中的观测值反映现象在一段时期内发展过程的总量,不同时期的观测值可以相加,相加结果表明现象在更长一段时间内的活动总量; 而时点序列中的观测值反映现象在某一瞬间上所达到的水平,不同时期的观测值不能相加,相加结果没有实际意义。

数值变换规律

长期趋势T

长期趋势( Secular trend,T )指的是统计指标在相当长的一段时间内, 到长期趋势影响因素的影响,表现出持续上升或持续下降的趋势 (随着时间的变换,数据呈现一个大的变换趋势) ,通常用 字母T表示。例如,随着国家经济的发展,人均收入将逐渐提升;随着医学 水平的提高,新生儿死亡率在不断下降。

季节趋势S

季节趋势( Seasonal Variation,S )是指由于“季节”的转变使得指标数值发生周期性变动。这里的季节是广义的,一般以月、季、周为时间单位,不能以年 作单位。例如雪糕和棉衣的销量都会随着季节气温的变化而周期变化;每年的长假(五一、十一、春节)都会引起出行人数的大量增加

以下举一个简单的例子帮助理解,例如借助百度指数 (baidu.com) 

查看数学建模字样的搜索量序列图,我们发现每隔一年会有一个尖峰,有趣的是这个尖峰刚好是九月份

循环变动C

循环变动( Cyclical Variation,C )与季节变动的周期不同,循环变动通常以若干年为周期,在曲线图上表现为波浪式的周期变动。这种周期变动的特征表现为增加和减少交替出现,但是并不具严格规则的周期性连续变动最典型的周期案例就是市场经济的商业周期和的整个国家的经济周期

不规则变动I


叠加和乘积模型

叠加模型 相互独立

Y = T + S + C + I

乘积模型 相互影响

Y = T * S * C * I 

注 

(1)数据具有 年内的周期性时才能使用时间序列分解 ,例如数据是月份数据(周期为12)、季度数据(周期为4) ,如果是年份数据则不行。
(2)在具体的时间序列图上,如果随着时间的推移,序列的季节波动变得越来越大,则反映各种变动之间的关系发生变化,建议使用乘积模型;反之,如果时间序列图的波动保持恒定,则可以直接使用叠加模型;当然,如果不存在季节波动,则两种分解均可以


spss缺失值填补

简单填补

五种填补方法 

填补原则

参考:SPSS缺失值填补原理 SPSS缺失值填补的原则-IBM SPSS Statistics 中文网站 (mairuan.com)

  SPSS缺失值数据可以分为三类,随机缺失、完全随机缺失以及非随机缺失。随机缺失和完全随机缺失的缺失值基本没有什么规律,但非随机缺失的缺失值很有可能有规律,下面就和大家讲解一下这三种缺失值的填补原则。

1.随机缺失

随机缺失的缺失值可以使用填补或者插补的方法,明白这一原则可以使用的缺失自填补或者插补方法就很多了,比如均值填补方法、同类均值填补方法以及多重填补方法等。

2.完全随机缺失

完全随机缺失的缺失值与可观察和非可观察数据没有任何逻辑上的联系,也就说数据只是单纯的丢失了,可以通过观察整体数据的观测值对缺失值进行分析。

3.非随机缺失

非随机缺失的缺失值是不可以通过缺失值填补方法进行处理的,因为很可能会导致整体数据统计分析结果出现错误,比如在问卷调查中,调查工资收入,收入低的人可能就会拒绝回答,这时候如果用均值填补或者其他填补方法,都会导致最终的调查结果不准确。


定义时间变量


时序图 

时序图同样使用spss生成 

由图可以看出,数据总体呈现上升的趋势 ,在一年中第二季度都明显高于全年,第四季度明显低于全年,具有很强的季节性,季节波动变化不大,使用叠加模型。


季节性分解

加法

注意: 加法季节因子的和为0  

正表示高于全年平均水平,负就反之,表明第二季度销量高于平均销量20.930件,其他季度同理

可以看出季节性分解将各个因素分开成较为简单的函数,可以单独进行拟合

乘法

乘法的也来试试

 


时间序列步骤

作时间序列图;
判断时间序列包含的变动成分;
时间序列分解(有周期性且包含长期趋势、季节变动或循环变动);
建立时间序列分析模型;
预测未来的指标数值。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1925167.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

WGCLOUD登录页面支持输入验证码吗

支持的 v3.5.3版本开始,WGCLOUD支持在登录页面配置输入验证码,我们可以根据自己的场景需要,配置是否在登录页面显示验证码,如下说明 登录页面添加验证码说明 - WGCLOUD

酒店管理系统小程序的设计

管理员账户功能包括:系统首页,个人中心,用户管理,酒店管理员管理,房间类型管理,房间信息管理,订单信息管理,系统管理 微信端账号功能包括:系统首页,房间信息…

CycleGAN深度学习项目

远程仓库 leftthomas/CycleGAN: A PyTorch implementation of CycleGAN based on ICCV 2017 paper "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks" (github.com) 运行准备 Anaconda 安装需要的库 指令 pip install panda…

AI时代:探索个人潜能的新视角

文章目录 Al时代的个人发展1 AI的高速发展意味着什么1.1 生产力大幅提升1.2 生产关系的改变1.3 产品范式1.4 产业革命1.5 Al的局限性1.5.1局限一:大模型的幻觉 1.5.2 局限二:Token 2 个体如何应对这种改变?2.1 职场人2.2 K12家长2.3 大学生2.4 创业者 3 人工智能发…

万界星空科技商业开源MES系统全面解析

万界星空科技商业开源MES源码可拖拽式数据大屏 开源MES系统具有定制化、节省成本、开放性和适应性等优势和特点,可以帮助企业更好地管理生产流程。万界星空MES制造执行系统的Java开源版本,为制造业企业提供了全面的生产管理解决方案。万界星空科技的目标…

从零开始做题:满屏的QR

题目 给出一张png图片 解题 import os import re import cv2 import argparse import itertools import numpy as npparser argparse.ArgumentParser() parser.add_argument(-f, typestr, defaultNone, requiredTrue,help输入文件名称) parser.add_argument(-p, typestr, d…

[Vulnhub] Stapler wp-videos+ftp+smb+bash_history权限提升+SUID权限提升+Kernel权限提升

信息收集 IP AddressOpening Ports192.168.8.106TCP:21,22,53,80,123,137,138,139,666,3306, Using Nmap for scanning: $ nmap -p- 192.168.8.106 --min-rate 1000 -sC -sV The results are as follows: PORT STATE SERVICE VERSION 20/tcp closed ftp-data…

昇思25天学习打卡营第20天 | 基于MindNLP+MusicGen生成自己的个性化音乐

基于MindNLPMusicGen生成个性化音乐 实验简介 MusicGen是Meta AI提出的音乐生成模型,能够根据文本描述或音频提示生成高质量音乐。该模型基于Transformer结构,分为三个阶段:文本编码、音频token预测和音频解码。此实验将演示如何使用MindSpo…

Java常用排序算法

冒泡排序(Bubble Sort) arr[0] 与 arr[1]比较,如果前面元素大就交换,如果后边元素大就不交换。然后依次arr[1]与arr[2]比较,第一轮将最大值排到最后一位。 第二轮arr.length-1个元素进行比较,将第二大元素…

高速数据采集与图像传输对带宽需求的对比分析

对于120MHz高速采集的数据,直接传输原始数据和将数据计算生成1024x1024的图像后再传输图像,这两种方法对带宽的影响会有显著不同。为了进行详细分析,我们需要考虑以下因素:数据采样率、数据量、图像生成算法、图像压缩和传输带宽需…

Spark调度底层执行原理详解(第35天)

系列文章目录 一、Spark应用程序启动与资源申请 二、DAG(有向无环图)的构建与划分 三、Task的生成与调度 四、Task的执行与结果返回 五、监控与容错 六、优化策略 文章目录 系列文章目录前言一、Spark应用程序启动与资源申请1. SparkContext的创建2. 资…

python:绘制一元四次函数的曲线

编写 test_x4_x2_4x.py 如下 # -*- coding: utf-8 -*- """ 绘制函数 y x^4x^24x-3 在 -2<x<2 的曲线 """ import numpy as np from matplotlib import pyplot as plt# 用于正常显示中文标题&#xff0c;负号 plt.rcParams[font.sans-s…

值得关注的数据资产入表

不错的讲解视频&#xff0c;来自&#xff1a;第122期-杜海博士-《数据资源入表及数据资产化》-大数据百家讲坛-厦门大学数据库实验室主办第122期-杜海博士-《数据资源入表及数据资产化》-大数据百家讲坛-厦门大学数据库实验室主办-20240708_哔哩哔哩_bilibili

《昇思25天学习打卡营第20天|onereal》

应用实践/LLM原理和实践/基于MindSpore的GPT2文本摘要 基于MindSpore的GPT2文本摘要 数据集加载与处理 数据集加载 本次实验使用的是nlpcc2017摘要数据&#xff0c;内容为新闻正文及其摘要&#xff0c;总计50000个样本。 数据预处理 原始数据格式&#xff1a; article: [CLS…

java框架-springmvc

文章目录 2. Springmvc概述3. springmvc与struts2不同5. springmvc入门6. springmvc 配置7. Handler配置8. 异常处理器9. ssm整合思路10. 上传图片11. RESTful支持12. 拦截器总结 2. Springmvc概述 Spring web mvc和Struts2都属于表现层的框架,它是Spring框架的一部分 3. sp…

QML 鼠标和键盘事件

学习目标&#xff1a;Qml 鼠标和键盘事件 学习内容 1、QML 鼠标事件处理QML 直接提供 MouseArea 来捕获鼠标事件&#xff0c;该操作必须配合Rectangle 获取指定区域内的鼠标事件, 2、QML 键盘事件处理&#xff0c;并且获取对OML直接通过键盘事件 Keys 监控键盘任意按键应的消…

防御第二次作业完成接口配置实验

一、实验括扑图 二、实验要求 1.防火墙向下使用子接口分别对应生产区和办公区 2.所有分区设备可以ping通网关 三、实验思路 1、配置各设备的IP地址 2、划分VLAN及VLAN的相关配置 3、配置路由及安全策略 四、实验步骤 1、配置PC跟Client还有server配置&#xff0…

Hive表【汇总】

提前必备 1、内部表和外部表的区别 概念讲解&#xff1a; 外部表&#xff1a;1、存放他人给予自己的数据2、当我们删除表操作时&#xff0c;会将表的元数据删除&#xff0c;保留数据文件 内部表&#xff1a;1、存放已有的数据2、当我们删除表操作时&#xff0c;会将表的元数据…

LeetCode Day8|● 344.反转字符串(原地) ● 541. 反转字符串II(i可以大步跨越) ● 卡码网:54.替换数字(ACM模式多熟悉熟悉)

字符串part01 day8-1 ● 344.反转字符串整体思路代码实现总结 day8-2 ● 541. 反转字符串II整体思路代码实现总结 day8-3 ● 卡码网&#xff1a;54.替换数字题目解题思路代码实现总结 day8-1 ● 344.反转字符串 整体思路 字符串和数组的思路差不多 原地操作 代码实现 class…

递归解决换零钱问题--代码实现

在上一篇中, 经过深入分析, 已经得出一个能够递归的形式化的结果, 现在则准备给出一个具体实现. 结果回顾 前述结果如下: caseOfChange(amount, cashList) { // base caseif (amount.isNegative()) { // 负数 return 0; } if (amount.isZero()) { // 0元 return 1; }if (cas…