昇思25天学习打卡营第二十天|基于MobileNetv2的垃圾分类

news2024/11/17 6:23:39

背景

提供免费算力支持,有交流群有值班教师答疑的华为昇思训练营进入第二十天了。
今天是第二十天,从第十天开始,进入了应用实战阶段,前九天都是基础入门阶段,具体的学习内容可以看链接
基础学习部分
昇思25天学习打卡营第一天|快速入门
昇思25天学习打卡营第二天|张量 Tensor
昇思25天学习打卡营第三天|数据集Dataset
昇思25天学习打卡营第四天|数据变换Transforms
昇思25天学习打卡营第五天|网络构建
昇思25天学习打卡营第六天|函数式自动微分
昇思25天学习打卡营第七天|模型训练
昇思25天学习打卡营第八天|保存与加载
昇思25天学习打卡营第九天|使用静态图加速
应用实践部分
昇思25天学习打卡营第十天|CycleGAN图像风格迁移互换
昇思25天学习打卡营第十一天|DCGAN生成漫画头像
昇思25天学习打卡营第十二天|Diffusion扩散模型
昇思25天学习打卡营第十三天|GAN图像生成
昇思25天学习打卡营第十四天|Pix2Pix实现图像转换
昇思25天学习打卡营第十五天|基于 MindSpore 实现 BERT 对话情绪识别
昇思25天学习打卡营第十六天|基于MindSpore的GPT2文本摘要
昇思25天学习打卡营第十七天|文本解码原理–以MindNLP为例
昇思25天学习打卡营第十八天|基于MindNLP+MusicGen生成自己的个性化音乐
昇思25天学习打卡营第十九天|K近邻算法实现红酒聚类

学习内容

本文档主要介绍垃圾分类代码开发的方法。通过读取本地图像数据作为输入,对图像中的垃圾物体进行检测,并且将检测结果图片保存到文件中。

1、实验目的

  • 了解熟悉垃圾分类应用代码的编写(Python语言);
  • 了解Linux操作系统的基本使用;
  • 掌握atc命令进行模型转换的基本操作。

2、MobileNetv2模型原理介绍

MobileNet网络是由Google团队于2017年提出的专注于移动端、嵌入式或IoT设备的轻量级CNN网络,相比于传统的卷积神经网络,MobileNet网络使用深度可分离卷积(Depthwise Separable Convolution)的思想在准确率小幅度降低的前提下,大大减小了模型参数与运算量。并引入宽度系数 α和分辨率系数 β使模型满足不同应用场景的需求。

由于MobileNet网络中Relu激活函数处理低维特征信息时会存在大量的丢失,所以MobileNetV2网络提出使用倒残差结构(Inverted residual block)和Linear Bottlenecks来设计网络,以提高模型的准确率,且优化后的模型更小。
在这里插入图片描述

图中Inverted residual block结构是先使用1x1卷积进行升维,然后使用3x3的DepthWise卷积,最后使用1x1的卷积进行降维,与Residual block结构相反。Residual block是先使用1x1的卷积进行降维,然后使用3x3的卷积,最后使用1x1的卷积进行升维。

  • 说明:
    详细内容可参见MobileNetV2论文

3、实验环境

本案例支持win_x86和Linux系统,CPU/GPU/Ascend均可运行。

在动手进行实践之前,确保您已经正确安装了MindSpore。不同平台下的环境准备请参考《MindSpore环境搭建实验手册》。

4、数据处理

4.1数据准备

MobileNetV2的代码默认使用ImageFolder格式管理数据集,每一类图片整理成单独的一个文件夹, 数据集结构如下:

└─ImageFolder

├─train
│   class1Folder
│   ......
└─eval
    class1Folder
    ......

4.2数据加载

配置后续训练、验证、推理用到的参数:
数据预处理操作

利用ImageFolderDataset方法读取垃圾分类数据集,并整体对数据集进行处理。

读取数据集时指定训练集和测试集,首先对整个数据集进行归一化,修改图像频道等预处理操作。然后对训练集的数据依次进行RandomCropDecodeResize、RandomHorizontalFlip、RandomColorAdjust、shuffle操作,以增加训练数据的丰富度;对测试集进行Decode、Resize、CenterCrop等预处理操作;最后返回处理后的数据集。

5、MobileNetV2模型搭建

使用MindSpore定义MobileNetV2网络的各模块时需要继承mindspore.nn.Cell。Cell是所有神经网络(Conv2d等)的基类。

神经网络的各层需要预先在__init__方法中定义,然后通过定义construct方法来完成神经网络的前向构造。原始模型激活函数为ReLU6,池化模块采用是全局平均池化层。

6、MobileNetV2模型的训练与测试

训练策略

一般情况下,模型训练时采用静态学习率,如0.01。随着训练步数的增加,模型逐渐趋于收敛,对权重参数的更新幅度应该逐渐降低,以减小模型训练后期的抖动。所以,模型训练时可以采用动态下降的学习率,常见的学习率下降策略有:

  • polynomial decay/square decay;
  • cosine decay;
  • exponential decay;
  • stage decay.

这里使用cosine decay下降策略:

在模型训练过程中,可以添加检查点(Checkpoint)用于保存模型的参数,以便进行推理及中断后再训练使用。使用场景如下:

  • 训练后推理场景
  1. 模型训练完毕后保存模型的参数,用于推理或预测操作。
  2. 训练过程中,通过实时验证精度,把精度最高的模型参数保存下来,用于预测操作。
  • 再训练场景
  1. 进行长时间训练任务时,保存训练过程中的Checkpoint文件,防止任务异常退出后从初始状态开始训练。
  2. Fine-tuning(微调)场景,即训练一个模型并保存参数,基于该模型,面向第二个类似任务进行模型训练。

这里加载ImageNet数据上预训练的MobileNetv2进行Fine-tuning,只训练最后修改的FC层,并在训练过程中保存Checkpoint。

模型训练与测试

在进行正式的训练之前,定义训练函数,读取数据并对模型进行实例化,定义优化器和损失函数。

首先简单介绍损失函数及优化器的概念:

  • 损失函数:又叫目标函数,用于衡量预测值与实际值差异的程度。深度学习通过不停地迭代来缩小损失函数的值。定义一个好的损失函数,可以有效提高模型的性能。

  • 优化器:用于最小化损失函数,从而在训练过程中改进模型。

定义了损失函数后,可以得到损失函数关于权重的梯度。梯度用于指示优化器优化权重的方向,以提高模型性能。

在训练MobileNetV2之前对MobileNetV2Backbone层的参数进行了固定,使其在训练过程中对该模块的权重参数不进行更新;只对MobileNetV2Head模块的参数进行更新。

MindSpore支持的损失函数有SoftmaxCrossEntropyWithLogits、L1Loss、MSELoss等。这里使用SoftmaxCrossEntropyWithLogits损失函数。

训练测试过程中会打印loss值,loss值会波动,但总体来说loss值会逐步减小,精度逐步提高。每个人运行的loss值有一定随机性,不一定完全相同。

每打印一个epoch后模型都会在测试集上的计算测试精度,从打印的精度值分析MobileNetV2模型的预测能力在不断提升。

7、模型推理

加载模型Checkpoint进行推理,使用load_checkpoint接口加载数据时,需要把数据传入给原始网络,而不能传递给带有优化器和损失函数的训练网络。

8、导出AIR/GEIR/ONNX模型文件

导出AIR模型文件,用于后续Atlas 200 DK上的模型转换与推理。当前仅支持MindSpore+Ascend环境。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1923249.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Avalonia创建导航菜单

1. 简介 已开源,后续还会继续更新学习到的内容,欢迎Star,GitHub地址 开发Avalonia需要的一些资料,我已经分享到另一篇文章 示意图 涉及到内容: MVVM路由模板 开发: 开发工具:Rider&#x…

Kithara与OpenCV (一)

Kithara使用 OpenCV 库 目录 Kithara使用 OpenCV 库简介需求和支持的环境构建 OpenCV 库使用 CMake 进行配置以与 Kithara 一起工作 使用 OpenCV 库设置项目运行 OpenCV 代码图像采集和 OpenCV自动并行化限制和局限性1.系统建议2.实时限制3.不支持的功能和缺失的功能4.显示 Ope…

Mac数据恢复篇:Mac照片恢复工具

由于更新错误、意外删除或数据覆盖,照片可能会从 Mac 上消失。当您忘记在Mac上启用iCloud时,您也可能会丢失它们。 幸运的是,有多种方法可以从Mac恢复丢失或删除的照片:使用备份文件夹或专业的Mac照片恢复软件。但是,如…

暑期备考2024上海初中生古诗文大会:单选题真题和独家解析

现在距离2024年初中生古诗文大会初选还有不到4个月(11月3日正式开赛),我们继续来看10道选择题真题和详细解析。为帮助孩子自测和练习,题目的答案和解析统一附后。 本专题持续分享。 一、上海初中古诗文大会历年真题精选(参考答案…

VS Code 代码格式化插件,代码美观的插件

背景: 前端代码格式化插件有很多,不同的编辑器和集成开发环境(IDE)通常会有不同的插件。以下是一些常用的前端代码格式化工具及其特点: 代码更加美观,可以使用工具来实现。常用的工具有Pretter、vuter、ES…

gitlab 搭建使用

1. 硬件要求 ##CPU 4 核心500用户 8 核心1000用户 ##内存 4 G内存500用户 8 G内存1000用户 2. 下载 链接 3. 安装依赖 yum -y install curl openssh-server postfix wget 4. 安装gitlab组件 yum -y localinstall gitlab-ce-15.9.3-ce.0.el7.x86_64.rpm 5. 修改配置文…

低成本,高性能:10 万美元实现Llama2-7B级性能

高性能的语言模型如Llama2-7B已经成为推动自然语言处理技术进步的重要力量。然而,这些模型往往需要昂贵的计算资源和庞大的研发投入,使得许多研究团队和小型企业望而却步。现在,JetMoE架构以其创新的设计和优化策略,不仅成功地在只…

算法复杂度<数据结构 C版>

什么是算法复杂度? 简单来说算法复杂度是用来衡量一个算法的优劣的,一个程序在运行时,对运行时间和运行空间有要求,即时间复杂度和空间复杂度。 目录 什么是算法复杂度? 大O的渐近表达式 时间复杂度示例 空间复杂度…

探索数据结构与算法的奇妙世界 —— Github开源项目推荐《Hello 算法》

在浩瀚的编程与计算机科学领域中,数据结构与算法无疑是每位开发者攀登技术高峰的必经之路。然而,对于初学者而言,这条路往往布满了荆棘与挑战。幸运的是,今天我要向大家推荐一个令人振奋的项目——《Hello Algo》,它正…

VSCode remote无法链接

报错信息如下: 远程主机密钥变化导致验证失败 无法连接 解决措施: 删除C:\Users\username.ssh\known_hosts中旧的主机密钥条目,重新连接

使用java实现快速排序算法的性能测试

Date: 2024.07.12 16:32:32 author: lijianzhan **简述:**在我的上一篇文章中简单的提到过算法,关于算法,现在再次的说明一下,算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程,一个算法的质量优…

mindspore打卡第24天之LSTM+CRF序列标注

LSTMCRF序列标注 概述 序列标注指给定输入序列,给序列中每个Token进行标注标签的过程。序列标注问题通常用于从文本中进行信息抽取,包括分词(Word Segmentation)、词性标注(Position Tagging)、命名实体识别(Named Entity Recognition, NER)等。以命名实…

力扣 爬楼梯

动态规划算法基础篇。 class Solution {public int climbStairs(int n) {int[] f new int[n 1];f[0] 1;f[1] 1;//当爬到n阶楼梯时&#xff0c;可知是由n-1阶或n-2阶楼梯而来for(int i 2; i < n; i) {f[i] f[i - 1] f[i - 2];//后面的每一阶种数由前两个状态得到}ret…

浪涌测试标准

IEC定义的浪涌标准主要包括以下几个方面&#xff1a;‌ 电源浪涌测试标准&#xff1a;‌ IEC 61000-4-11规定了如何进行电源电压变化测试&#xff0c;‌以评估设备在电源电压变动时的抗干扰性能。‌IEC 61000-4-13规定了如何进行电源瞬态间隔测试&#xff0c;‌以评估设备在电源…

计网-三次握手和四次挥手

TCP建立和断开连接的过程&#xff08;三次握手和四次挥手&#xff09; TCP通信的过程&#xff1a; 问题&#xff1a;tcp是如何保证数据在客户端和服务端之间通信传输的&#xff1f; 分为三个步骤&#xff1a;三次握手&#xff0c;传输数据确认&#xff0c;四次挥手。三次握手…

内容管理(C++)

文章目录 new 和 delete对于内置类型对于自定类型 operator new 和 operator deletenew 可以抛异常 new[] 和 delete[]&#xff08;补充&#xff09;定位new总结 以下测试都是在 VS2019环境下测试。 new 和 delete 对于内置类型 在C语言中&#xff0c;我们动态开辟内存用的是…

家具展示预约小程序对线上生意有什么用

沙发、茶几、衣柜等各种家具用品是每个家庭必备的&#xff0c;尤其是新房更需要&#xff0c;且在客户消费能力方面通常预算也比较足&#xff0c;市场中大小品牌比较多&#xff0c;以商场店、独立门店、线上电商平台经营为主。 在实际经营中&#xff0c;厂商和经销商都需要找到…

根据脚手架archetype快速构建spring boot/cloud项目

1、找到archetype&#xff0c;并从私仓下载添加archetype到本地 点击IDEA的file&#xff0c;选择new project 选择maven项目&#xff0c;勾选create from archetype 填写archetype信息&#xff0c;&#xff08;repository填写私仓地址&#xff09; 2、选择自定义的脚手架arche…

独家详细思路-2024 辽宁省大学数学建模竞赛C题

&#xff08;1&#xff09;当其他反应条件一定时&#xff0c;分别探讨反应温度&#xff0c;溶液pH&#xff0c;吸附剂用量对As(V)和ROX去除率的影响。 重点注意&#xff1a;分别探讨 去除率 思路&#xff1a;首先进行数据的预处理&#xff0c;包括缺失值和异常值处理&#xf…

ThreeJS-3D教学十五:ShaderMaterial(noise、random)

ThreeJS-3D教学十四:ShaderMaterial(length、fract、step) 上面这篇主要是操作 fragmentShader 片元着色器,实现对物体颜色的修改,这次咱们来看下修改 vertexShader 顶点着色器,这个其实就是位移各个顶点的位置。 接下来我们先介绍下 noise 噪声函数(Perlin Noise、Sim…