AI时代算法面试:揭秘高频算法问题与解答策略

news2024/11/14 17:03:47

三种决策树算法的特点和区别

  • ID3算法:基本的决策树算法,适用于简单的分类问题
  • C4.5算法:改进了ID3算法,适用于更复杂的分类问题,可以处理连续型数据和缺失值
  • CART算法:更加通用的决策树算法,适用于分类和回归问题,可以处理连续型数据和多分类问题

决策树算法详解:从构造到剪枝,实战Titanic生存预测_决策树分类算法及应用-CSDN博客

Lightgbm原理以及过程

  1. LightGBM(Light Gradient Boosting Machine)是由微软开发的一种基于决策树的分布式梯度提升框架,专门用于快速、高效的机器学习模型训练
  2. LightGBM 是一个性能高度优化的 GBDT(Gradient Boosting Decision Trees)算法。
  3. LightGBM 对传统的 GBDT 进行了多种改进和优化,以提高效率和性能。
  4. 它在处理大规模数据集和高维数据时速度更快,占用内存更少。

以下是 LightGBM 的基本原理简单讲解: 

  • 梯度提升(Gradient Boosting)

    • 梯度提升是一种集成学习方法,通过逐步构建一系列弱学习器(通常是决策树),每个学习器试图纠正前一个学习器的错误。LightGBM 采用这种方法,但对算法进行了多种优化,以提高效率和性能。
  • 基于叶子的增长策略(Leaf-wise Growth Strategy)

    • 与其他基于深度或宽度的增长策略不同,LightGBM 使用基于叶子的增长策略,即每次选择一个叶子节点来分裂,从而最大化信息增益。这种方法能够更好地减少损失,但也可能导致树的不平衡。
  • 直方图优化(Histogram-based Optimization)

    • LightGBM 通过将连续特征离散化为多个区间(直方图桶),大大减少了数据的存储和计算成本。每个区间代表一个特定的特征值范围,模型仅在这些区间上进行计算,从而加速了训练过程。
  • 支持并行和分布式训练

    • LightGBM 支持数据并行和特征并行,可以在多核 CPU 和多机环境下进行高效训练。这使得它能够处理大规模数据集。

大数据分析案例-基于LightGBM算法构建乳腺癌分类预测模型_lightgbm 医疗-CSDN博客

数据挖掘比赛比较基础的baseline_比赛baseline-CSDN博客

梯度消失的概念,如何解决

梯度消失的原因

梯度消失是指在神经网络的训练过程中,从输出层向输入层传递的误差梯度逐渐变小,以至于到达输入层时已经接近于零。这个问题通常发生在使用了sigmoid或tanh这类激活函数的深度网络中。这些激活函数的导数在其值域的两端都非常小(接近于零),因此在多层网络中连续乘以这些小的导数会导致梯度迅速减小,从而使得网络的前几层学习非常缓慢或几乎不学习,这严重阻碍了模型的训练效率。

解决梯度消失的方法

  1. 改用ReLU及其变体作为激活函数

    • ReLU(Rectified Linear Unit)激活函数在正区间的导数为1,这样可以有效防止梯度消失的问题。其变体如Leaky ReLU或Parametric ReLU (PReLU) 也是不错的选择,它们在负区间提供一个小的非零斜率,保持信息的流动。
  2. 使用批归一化(Batch Normalization)

    • 批归一化通过规范化每一层的输入来缓解内部协变量偏移(每层输入的分布改变),可以帮助改善网络的训练速度,减少梯度消失的问题。
  3. 采用合适的权重初始化策略

    • 选择合适的方法初始化网络权重对预防梯度消失至关重要。例如,He 初始化是为ReLU激活函数专门设计的,可以在训练开始时保持激活和梯度的尺度。
  4. 使用残差网络(ResNet)架构

    • 残差网络通过引入跳过连接(skip connections),允许梯度直接流向更早的层。这样的结构有助于梯度更好地流动,防止在深层网络中消失。
  5. 使用梯度剪辑(Gradient Clipping)

    • 这是一种在训练中控制梯度爆炸问题的技术,但它也可以间接帮助缓解梯度消失,因为它可以帮助保持数值稳定性,尤其是在RNNs中。
  6. 改进的RNN架构,如LSTM和GRU

    • 长短期记忆(LSTM)和门控循环单元(GRU)是特别设计来防止梯度消失问题的RNN变体。它们通过引入门控机制来控制信息的流动,有效避免了传统RNN中梯度消失的问题。

K折交叉验证

数据挖掘比赛比较基础的baseline_比赛baseline-CSDN博客

K折交叉验证找到最佳超参数

K-means的原理以及过程

时间和空间复杂度

K的值怎么确定

K-Means(K-均值)聚类算法理论和实战-CSDN博客

SVM的原理 

  1. 最大化边际:SVM的核心理念是寻找一个决策边界(在二维空间中是一条线,在更高维空间中是一个平面或超平面),这个边界能够最大程度地区分不同类别的数据点。SVM尝试最大化各类数据点到决策边界的最小距离,这个距离被称为“边际”。
  2. 支持向量:决策边界的确切位置由距离它最近的几个训练样本确定,这些样本被称为“支持向量”。SVM模型特别关注这些关键样本。
  3. 核技巧:对于非线性可分的数据,SVM使用所谓的“核技巧”将数据映射到更高维的空间,从而使得数据在新空间中线性可分。常见的核函数包括线性核、多项式核、径向基函数(RBF)核等。

向量机SVM原理理解和实战_svm实战-CSDN博客

降维分析方法

PCA原理及实现过程

主成分分析(Principal Component Analysis)是一种常用的降维技术,通过线性变换将高维数据投影到低维空间,同时尽量保留数据的方差信息。PCA 常用于数据预处理、特征提取和数据可视化。

KPCA降维原理

核主成分分析(Kernel Principal Component Analysis)对于输入空间中的矩阵X,先用一个非线性映射把X中的所有样本映射到一个高维甚至是无穷维的空间(特征空间),使其线性可分,然后在这个高维空间进行PCA降维

T-SNE降维原理

TSNE是另一种常用的数据降维方法。由T和SNE组成,也就是T 分布和随机近邻嵌入 (Stochastic neighbour Embedding)。其主要优势在于高维数据 空间中距离相近的点投 影到低维空间中仍然相近。 T-SNE(TSNE)将数据点之间的相似度转换为概率。原始空间中的 相似度由高斯联合概率 表示,嵌入空间的相似度由“学生T分布”表

葡萄酒品质揭秘:运用PCA和KPCA技术深度解析葡萄酒分类-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1911173.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

住宅代理、移动代理和数据中心代理之间的区别

如果您是一名认真的互联网用户,可能需要反复访问某个网站或服务器,可能是为了数据抓取、价格比较、SEO 监控等用例,而不会被 IP 列入黑名单或被 CAPTCHA 阻止。 代理的工作原理是将所有传出数据发送到代理服务器,然后代理服务器将…

用LangGraph、 Ollama,构建个人的 AI Agent

如果你还记得今年的 Google I/O大会,你肯定注意到了他们今年发布的 Astra,一个人工智能体(AI Agent)。事实上,目前最新的 GPT-4o 也是个 AI Agent。 现在各大科技公司正在投入巨额资金来创建人工智能体(AI …

VBA实现Excel的数据透视表

前言 本节会介绍通过VBA的PivotCaches.Create方法实现Excel创建新的数据透视表、修改原有的数据透视表的数据源以及刷新数据透视表内容。 本节测试内容以下表信息为例 1、创建数据透视表 语法:PivotCaches.Create(SourceType, [SourceData], [Version]) 说明&am…

面对数据不一致性的解决方案:

polarDB是读写分离和计算存储分离的分布式数据库,并且副本的log replicate是基于Parallel-Raft协议来实现的。所以在瞬时进行写和读的操作时,是不可避免会存在数据一致性问题,导致这个数据一致性问题的原因不是事务,而是多副本日志…

【考研数学】李林《880题》25版听说大改版?和和24版差别大吗?

25版和24版总体差别不大,只有小部分内容有所变动! 拓展题部分的更新:25版在拓展题部分进行了一些更新,从李林的模拟题中挑选了大约40道题目添加到新版中。 高等数学:变动主要集中在前三章,但具体的题目变…

【C++】开源:坐标转换和大地测量GeographicLib库配置使用

😏★,:.☆( ̄▽ ̄)/$:.★ 😏 这篇文章主要介绍坐标转换和大地测量GeographicLib库配置使用。 无专精则不能成,无涉猎则不能通。——梁启超 欢迎来到我的博客,一起学习,共同进步。 喜欢的朋友可以关…

Facebook社交平台的未来发展趋势分析

随着科技和社交需求的不断演变,Facebook作为全球最大的社交平台之一,其未来发展的趋势备受关注。从技术创新到社会影响,Facebook正在经历着前所未有的变化和挑战。本文将探讨Facebook未来发展的几个关键趋势,并分析其可能的影响和…

SpringBoot 实现视频分段播放(通过进度条来加载视频)

需求:现在我本地电脑中有一个文件夹,文件夹中都是视频,需要实现视频播放的功能。 问题:如果通过类似 SpringBoot static 文件夹的方式来实现,客户端要下载好完整的视频之后才可以播放,并且服务端也会占用大…

Androidstudio开发,天气预报APP

1.项目功能思维导图 2. 项目涉及到的技术点 数据来源:和风天气API使用okhttp网络请求框架获取api数据使用gson库解析json数据使用RecyclerViewadapter实现未来7天列表展示和天气指数使用PopupMenu 实现弹出选项框使用动画定时器实现欢迎页倒计时和logo动画使用Text…

用Vue3和Plotly.js绘制交互式3D散点图

本文由ScriptEcho平台提供技术支持 项目地址:传送门 使用 Plotly.js 创建 2D 密度图 应用场景介绍 密度图是一种可视化数据分布的图表,它显示了数据点的密度在不同区域的变化情况。在许多科学和工程领域中,密度图被广泛用于探索和分析数据…

java项目总结数据库

1.什么是数据库 用于存储和管理数据的仓库 2.数据库的特点 1.持久化存储数据。确实数据库就是一个文件系统。 2.便于存储和管理数据 3.使用统一的方式操作数据库 --SQL 3.MqSql服务启动 4.登录和退出 这里的ip值IP地址 5.客户端与服务器关系 6.目录结构 7.SQL 1.什么是SQL&…

AI赋能OFFICE 智能化办公利器!

ONLYOFFICE在线编辑器的最新版本8.1已经发布,整个套件带来了30多个新功能和432个bug修复。这个文档编辑器无疑成为了办公软件中的翘楚。它不仅支持处理文本文档、电子表格、演示文稿、可填写的表单和PDF,还允许多人在线协作,并支持AI集成&…

10、Python之写出更加Pythonic的代码:unpacking拆包机制

引言 有些小伙伴有其他编程语言的学习、使用的经验,然后迁移到Python。一般会比完全的新手小白,更快速地把Python用起来。这是他们的优势,但也是他们的劣势。 之所以这么说,是因为从其他编程语言带过来的,除了相通的编…

多模态:Nougat详解

文章目录 前言一、模型结构1. encoder2. decoder3. set 二、数据增强三、数据splitting the pages 四、实验评估repetitions during inference 五、代码1. 环境安装2. Dataset(dataset.py)3. Model(model.py) 总结 前言 科学知识…

【论文速读】| 用于安全漏洞防范的人工智能技术

本次分享论文:Artificial Intelligence Techniques for Security Vulnerability Prevention 基本信息 原文作者:Steve Kommrusch 作者单位:Colorado State University, Department of Computer Science, Fort Collins, CO, 80525 USA 关键…

给数组/对象添加一个(key-value)对象

需要将一个value值前面加上key值,放进数组/对象中 this.$set(res.data[0],type,1) this.$set( target, key, value ) target:要更改的数据源(可以是对象或者数组) key:要更改的具体数据 value :重新赋的值。 结果:…

初识C++【命名空间】【输入输出】【缺省参数】【函数重载】

前言 C是一种通用的编程语言,被广泛用于开发各种应用程序,包括系统软件、游戏、手机应用和高性能计算等。它是C语言的扩展,添加了许多新特性和功能,并支持面向对象编程。C可以在不同的平台上编译和运行,具有高效性、可…

C++:C++入门基础|命名空间|输入输出

欢迎来到HarperLee的学习笔记! 博主主页传送门: HarperLee的博客主页! 想要一起进步的uu来后台哦! 一、什么是C? 在此之前,我们所学习的C语言是一种结构化和模块化的语言,适合处理较小规模的程序。对于复杂的问题&a…

【Java算法】二分查找 下

🔥个人主页: 中草药 🔥专栏:【算法工作坊】算法实战揭秘 一.山脉数组的峰顶索引 题目链接:852.山脉数组的峰顶 ​ 算法原理 这段代码实现了一个查找山峰数组中峰值索引的算法。山峰数组是一个先递增后递减的数组&…

14-55 剑和诗人29 - RoSA:一种新的 PEFT 方法

介绍 参数高效微调 (PEFT) 方法已成为 NLP 领域研究的热门领域。随着语言模型不断扩展到前所未有的规模,在下游任务中微调所有参数的成本变得非常高昂。PEFT 方法通过将微调限制在一小部分参数上来提供解决方案,从而以极低的计算成本在自然语言理解任务上…