【优化论】基本概念与细节

news2024/11/17 15:43:27

在这里插入图片描述

优化论(Optimization Theory)是数学和计算机科学中一个重要的分支,旨在寻找给定问题的最优解。这个领域的应用非常广泛,从经济学、工程学到机器学习、金融等各个领域都有其踪迹。我们可以通过一系列直观的比喻来理解优化论的基本概念和技术细节。

基本概念

  1. 目标函数(Objective Function)
    • 比喻:想象你在一个山谷里徒步旅行,目标是找到山谷中最低的点(或山峰的最高点)。目标函数就像这座山谷的地形图,它告诉你每个点的海拔高度。优化的目标是找到这个地形图上的最低点或最高点。
    • 技术细节:目标函数通常表示为 f ( x ) f(x) f(x) ,其中 x x x 是变量向量, f ( x ) f(x) f(x) 是目标函数在 x x x 处的值。
  2. 决策变量(Decision Variables)
    • 比喻:在徒步旅行的例子中,决策变量就像是你当前所在的位置的坐标(比如横坐标和纵坐标)。这些变量决定了目标函数的值。
    • 技术细节:决策变量可以是一个或多个,表示为向量 x = ( x 1 , x 2 , . . . , x n ) x = (x_1, x_2, ..., x_n) x=(x1,x2,...,xn)
  3. 约束条件(Constraints)
    • 比喻:假设你在徒步旅行中有一些限制,比如不能穿过河流或者必须保持在某个路径上。约束条件就是这些限制,规定了哪些路径是可行的,哪些是不允许的。
    • 技术细节:约束条件可以是等式(如 g i ( x ) = 0 g_i(x) = 0 gi(x)=0 )或不等式(如 h j ( x ) ≤ 0 h_j(x) \leq 0 hj(x)0 ),限制了决策变量的取值范围。

优化问题的分类

  1. 线性规划(Linear Programming, LP)

    • 比喻:如果地形是由平坦的平面组成,那么寻找最低点就变得简单了,因为每个路径都是直线。线性规划就是这样的一类问题,目标函数和约束条件都是线性的。
    • 技术细节:线性规划的问题通常形式为:

    $$
    \min \space c^T x \space \text{subject to} , Ax \leq b

    $$

    其中 c c c 是系数向量, A A A 是约束条件的矩阵, b b b 是约束条件的向量。

  2. 非线性规划(Nonlinear Programming, NLP)

    • 比喻:如果地形是复杂的,有山有谷,那么寻找最低点就变得困难。非线性规划就是这样的一类问题,目标函数或约束条件是非线性的。

    • 技术细节:非线性规划的问题形式为:

      min ⁡   f ( x )  subject to   g i ( x ) ≤ 0 ,   h j ( x ) = 0 \min \, f(x) \ \text{subject to} \, g_i(x) \leq 0, \, h_j(x) = 0 minf(x) subject togi(x)0,hj(x)=0

      其中 f ( x ) f(x) f(x) 是非线性目标函数, g i ( x ) g_i(x) gi(x) h j ( x ) h_j(x) hj(x) 是非线性约束条件。

  3. 整数规划(Integer Programming, IP)

    • 比喻:假设你只能站在地图上的格点上(比如网格上的交点),不能站在两点之间的位置。整数规划就是这样的问题,决策变量只能取整数值。
    • 技术细节:整数规划的问题形式类似于线性或非线性规划,但要求 x 的所有分量都是整数。

优化方法

  1. 梯度下降法(Gradient Descent)

    • 比喻:在山谷中寻找最低点时,你可以沿着当前所在位置的最陡下降方向走。梯度下降法就是基于这样的原理,每一步都沿着目标函数的梯度方向移动。

    • 技术细节:梯度下降法的更新公式为:

      x k + 1 = x k − α ∇ f ( x k ) x_{k+1} = x_k - \alpha \nabla f(x_k) xk+1=xkαf(xk)

      其中 α \alpha α 是步长, ∇ f ( x k ) \nabla f(x_k) f(xk) 是目标函数在 x k x_k xk 处的梯度。

  2. 牛顿法(Newton’s Method)

    • 比喻:牛顿法不仅考虑了当前的斜率,还考虑了地形的曲率,就像是使用地形的二阶信息来更快地找到最低点。

    • 技术细节:牛顿法的更新公式为:

      x k + 1 = x k − ( ∇ 2 f ( x k ) ) − 1 ∇ f ( x k ) x_{k+1} = x_k - \left( \nabla^2 f(x_k) \right)^{-1} \nabla f(x_k) xk+1=xk(2f(xk))1f(xk)

      其中 ∇ 2 f ( x k ) \nabla^2 f(x_k) 2f(xk) 是目标函数在 x k x_k xk 处的 H e s s i a n Hessian Hessian 矩阵。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1900416.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据库之SQL(二)

目录 一、简述SQL中如何将“行”转换为“列” 二、简述SQL注入 三、如何将一张表的部分数据更新到另一张表 四、WHERE和HAVING的区别 一、简述SQL中如何将“行”转换为“列” 我们以MySQL数据库为例,来说明行转列的实现方式。 首先,假设我们有一张分…

2024亚太杯中文赛数学建模B题完整论文讲解(含每一问python代码+结果+可视化图)

大家好呀,从发布赛题一直到现在,总算完成了2024 年第十四届 APMCM 亚太地区大学生数学建模竞赛B题洪水灾害的数据分析与预测完整的成品论文。 本论文可以保证原创,保证高质量。绝不是随便引用一大堆模型和代码复制粘贴进来完全没有应用糊弄人…

【JavaWeb程序设计】JSP编程II

目录 一、输入并运行下面的import_test.jsp页面 1.1 代码运行结果 1.2 修改编码之后的运行结果 二、errorPage属性和isErrorPage属性的使用 2.1 下面的hello.jsp页面执行时将抛出一个异常,它指定了错误处理页面为errorHandler.jsp。 2.1.2 运行截图 2.2 下面…

罗剑锋的C++实战笔记学习(一):const、智能指针、lambda表达式

1、const 1)、常量 const一般的用法就是修饰变量、引用、指针,修饰之后它们就变成了常量,需要注意的是const并未区分出编译期常量和运行期常量,并且const只保证了运行时不直接被修改 一般的情况,const放在左边&…

政安晨【零基础玩转各类开源AI项目】基于Ubuntu系统部署ComfyUI:功能最强大、模块化程度最高的Stable Diffusion图形用户界面和后台

目录 ComfyUI的特性介绍 开始安装 做点准备工作 在Conda虚拟环境中进行 依赖项的安装 运行 政安晨的个人主页:政安晨 欢迎 👍点赞✍评论⭐收藏 收录专栏: 零基础玩转各类开源AI项目 希望政安晨的博客能够对您有所裨益,如有不足之处&…

2024年江苏省研究生数学建模竞赛B题人造革性能优化设计研究论文和代码

经过不懈的努力, 2024年江苏省研究生数学建模竞赛B题人造革性能优化设计研究论文和代码已完成,代码为C题全部问题的代码,论文包括摘要、问题重述、问题分析、模型假设、符号说明、模型的建立和求解(问题1模型的建立和求解、问题2模…

适用于 Windows的 5 个最佳 PDF 转 Word 转换器

PDF 文件是共享文档的首选格式,但是,此类文件存在限制,使其难以修改或编辑。因此,您可能会发现自己正在寻找一种将 PDF 文件转换为 Word 或其他可编辑格式的方法。 有许多不同的 PDF 转换器,每个转换器的功能略有不同…

KDTree 简单原理与实现

介绍 K-D树是一种二叉树的数据结构,其中每个节点代表一个k维点,可用于组织K维空间中的点,其中K通常是一个非常大的数字。二叉树结构允许对多维空间中的点进行非常有效的搜索,包括最近邻搜索和范围搜索,树中的每个非叶…

嵌入式系统中状态机实现详解

嵌入式开发中系统经常处于某种状态,如何处理呢?接下来分析一下,状态机的实现无非就是 3 个要素:状态、事件、响应。转换成具体的行为就 3 句话。 发生了什么事? 现在系统处在什么状态? 在这样的状态下发生了这样的事,系统要干什么? 用 C 语言实现状态机主要有 3 种方法…

机器学习——岭回归

1、岭回归与线性回归的区别 岭回归(Ridge Regression)和线性回归(Linear Regression)都是用于回归分析的统计方法,但它们在处理方式和应用场景上有一些关键的区别: a)基本概念 线性回归:目标是…

帕金森病患者在选择运动疗法时应该注意哪些事项?

帕金森病患者在选择运动疗法时,应该遵循以下几点注意事项: 个性化运动处方:根据患者的病情、年龄、健康状况、以往运动能力等因素,制定个体化的运动处方。 避免运动负荷过大:运动时间不宜过长,注意控制心率…

【优化论】约束优化算法

约束优化算法是一类专门处理目标函数在存在约束条件下求解最优解的方法。为了更好地理解约束优化算法,我们需要了解一些核心概念和基本方法。 约束优化的核心概念 可行域(Feasible Region): 比喻:想象你在一个园艺场…

量化机器人:金融市场的智能助手

引言 想象一下,在繁忙的金融市场中,有一位不知疲倦、冷静客观的“超级交易员”,它能够迅速分析海量数据,精准捕捉交易机会,并自动完成买卖操作。这位“超级交易员”不是人类,而是我们今天要聊的主角——量…

SSM家庭理财个人理财系统-JAVA【数据库设计、源码、开题报告】

第一章 绪论 1.1 课题背景、目的及意义 从 20 世纪末以来,在全球经济日趋一体化的背景之下,中国经济也得到了飞速的发展,家庭收入也快速增长。居民的消费结构发生了巨大变化,购置房产、旅游、汽车消费、教育等成为居民消费重点。…

SQL使用join查询方式找出没有分类的电影id以及名称

系列文章目录 文章目录 系列文章目录前言 前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享给你的码吧。 描述 现有电影信息…

ABAP 生成word文档

1.创建模板 通过开发工具->空间->格式文本为word添加变量 选中要设为变量的文本,点击格式文本,然后在属性页签设置变量名 模板使用示例参考ZABAPDOCX包下的模板 2. 代码生成 参考ZABAPDOCX包下示例程序,可直接执行下载word文档 如果…

linux ifconfig未找到命令

linux ifconfig未找到命令 1、使用yum安装net-tools yum install net-toolsyum报未找到命令请查看文章vim未找到命令,且yum install vim安装vim失败 2、安装后使用ifconfig命令 ifconfig

【Kubernetes】Pod 资源调度之亲和性调度

Pod 资源调度之亲和性调度 1.Node 亲和性调度1.1 Node 硬亲和性1.2 Node 软亲和性 2.Pod 亲和性调度2.1 Pod 硬亲和2.2 Pod 软亲和2.3 Pod 反亲和 Kubernetes 的 默认调度器 以 预选、优选、选定机制 完成将每个新的 Pod 资源绑定至为其选出的目标节点上,不过&#…

解决数据库PGSQL,在Mybatis中创建临时表报错TODO IDENTIFIER,连接池用的Druid。更换最新版本Druid仍然报错解决

Druid版本1.1.9报错Caused by: java.sql.SQLException: sql injection violation, syntax error: TODO IDENTIFIER : CREATE TEMPORARY TABLE temp_ball_classify (id int8 NOT NULL,create_time TIMESTAMP,create_by VARCHAR,classify_name VARCHAR) 代码如下: 测…

基于java+springboot+vue实现的在线课程管理系统(文末源码+Lw)236

摘要 本文首先介绍了在线课程管理系统的现状及开发背景,然后论述了系统的设计目标、系统需求、总体设计方案以及系统的详细设计和实现,最后对在线课程管理系统进行了系统检测并提出了还需要改进的问题。本系统能够实现教师管理,科目管理&…