前言
模型训练一般分为四个步骤:
- 构建数据集。
- 定义神经网络模型。
- 定义超参、损失函数及优化器。
- 输入数据集进行训练与评估。
有了数据集和模型后,可以进行模型的训练与评估。
构建数据集
定义神经网络模型
class Network(nn.Cell):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.dense_relu_sequential = nn.SequentialCell(
nn.Dense(28*28, 512),
nn.ReLU(),
nn.Dense(512, 512),
nn.ReLU(),
nn.Dense(512, 10)
)
def construct(self, x):
x = self.flatten(x)
logits = self.dense_relu_sequential(x)
return logits
model = Network()
从网络构建中加载代码,构建一个神经网络模型。
定义超参、损失函数和优化器
超参
超参数是可以调整的参数,可以控制深度学习模型训练优化的过程,包括训练轮次、批次大小和学习率等。这些超参数的取值会影响模型的训练和收敛速度,其中学习率在迭代过程中控制模型的学习进度。
损失函数
损失函数用于评估模型预测值和目标值之间的误差,帮助模型降低误差并提高预测准确性。常见的损失函数包括均方误差和负对数似然,用于回归和分类任务。nn.CrossEntropyLoss结合了多种损失函数的功能,对模型的预测结果进行归一化并计算误差。
优化器
模型优化是通过调整模型参数来减少模型误差的过程,MindSpore提供了多种优化算法的实现,称之为优化器。优化器内部定义了模型参数优化过程,所有优化逻辑都封装在优化器对象中。在这里,使用了SGD(随机梯度下降)优化器。
训练与评估
设置了超参、损失函数和优化器后,我们就可以循环输入数据来训练模型。一次数据集的完整迭代循环称为一轮(epoch)。每轮执行训练时包括两个步骤:训练和验证/测试。在训练阶段,模型通过迭代训练数据集来调整参数,以尝试收敛到最佳参数。而在验证/测试阶段,模型通过迭代测试数据集来评估模型的性能是否提升。这种流程的循环迭代可以帮助模型不断学习和优化,以达到更好的性能和准确度。
# Define forward function
def forward_fn(data, label):
logits = model(data)
loss = loss_fn(logits, label)
return loss, logits
# Get gradient function
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)
# Define function of one-step training
def train_step(data, label):
(loss, _), grads = grad_fn(data, label)
optimizer(grads)
return loss
def train_loop(model, dataset):
size = dataset.get_dataset_size()
model.set_train()
for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
loss = train_step(data, label)
if batch % 100 == 0:
loss, current = loss.asnumpy(), batch
print(f"loss: {loss:>7f} [{current:>3d}/{size:>3d}]")
def test_loop(model, dataset, loss_fn):
num_batches = dataset.get_dataset_size()
model.set_train(False)
total, test_loss, correct = 0, 0, 0
for data, label in dataset.create_tuple_iterator():
pred = model(data)
total += len(data)
test_loss += loss_fn(pred, label).asnumpy()
correct += (pred.argmax(1) == label).asnumpy().sum()
test_loss /= num_batches
correct /= total
print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
loss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), learning_rate=learning_rate)
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train_loop(model, train_dataset)
test_loop(model, test_dataset, loss_fn)
print("Done!")
总结
模型训练一般包括构建数据集、定义神经网络模型、定义超参数、损失函数和优化器,以及输入数据集进行训练和评估。