【论文解读】CVPR2024:DUSt3R: Geometric 3D Vision Made Easy

news2024/9/22 7:17:09

论文“”https://openaccess.thecvf.com/content/CVPR2024/papers/Wang_DUSt3R_Geometric_3D_Vision_Made_Easy_CVPR_2024_paper.pdf 

代码:GitHub - naver/dust3r: DUSt3R: Geometric 3D Vision Made Easy


            DUSt3R是一种旨在简化几何3D视觉任务的新框架。作者着重于使3D重建过程更加易于使用和高效。该框架利用深度学习和几何处理的最新进展,提高了准确性并降低了计算复杂性。 

1 摘要

        本文提出了DUSt3R,一种无需相机校准或视点位置信息即可处理任意图像集合的密集、无约束立体3D重建的全新范式。我们将成对重建问题视为点图的回归,放宽了传统投影相机模型的硬约束。这种方法统一了单目和双目重建案例。

        在提供多于两张图像的情况下,我们进一步提出了一种简单但有效的全局对齐策略,将所有成对点图表达在一个共同的参考框架中。我们基于标准Transformer编码器和解码器的网络架构,利用强大的预训练模型。       

        我们的方法直接提供了场景的3D模型以及深度信息,并且可以从中无缝地恢复像素匹配、焦距、相对和绝对相机参数。在单目和多视图深度估计以及相对姿态估计方面的广泛实验展示了DUSt3R如何有效地统一各种3D视觉任务,创造新的性能记录。总而言之,DUSt3R使许多几何3D视觉任务变得简单。

图1展示了DUSt3R的工作流程和重建效果。

  • 上半部分:DUSt3R以一组不受约束的图像为输入,输出点图(pointmaps),从这些点图可以直接推导出各种几何量。

  • 下半部分:展示了DUSt3R在没有输入相机位姿或内参的情况下进行的一致3D重建。从左到右依次是输入图像、彩色点云、带有阴影的渲染。右上角的图示例展示了DUSt3R在没有视觉重叠的情况下也能进行场景重建。

2 主要贡献

  1. 简化的流程:DUSt3R将传统的多步骤3D视觉流程简化为一个更直接的过程。这种简化有助于减少错误并提高可用性。
  2. 鲁棒性:该框架在各种数据集和场景中表现出鲁棒性,包括不同的光照条件和遮挡情况。
  3. 高效性:通过优化算法组件和实现方式,DUSt3R在不牺牲准确性的情况下,实现了显著的计算效率提升。

3 核心算法: 

         DUSt3R算法结合了现代深度学习技术和传统几何方法,通过高效的点云生成和三维重建技术,提供高精度和高鲁棒性的三维重建结果。 

4  DUSt3R网络的架构及其主要组件

图2展示了DUSt3R网络的架构及其主要组件。这张图形象地说明了网络如何处理输入的两张RGB图像(I1和I2),并生成对应的点云图(Pointmap)和置信度图(Confidence Map)。

网络架构
  1. 输入图像

    输入是两张RGB图像,分别表示为I1和I2。I1表示由第一个相机拍摄的图像,I2表示由第二个相机拍摄的图像。

  2. ViT编码器(ViT Encoder)

    输入图像I1和I2首先经过一个共享权重的ViT编码器进行特征提取。ViT编码器是一种基于视觉Transformer(ViT)的模型,用于将图像转化为Token表示(Token Representation)。编码后的特征表示分别为F1和F2。

  3. Patchify

    编码器输出的Token表示F1和F2会被划分成小块(Patchify),每个块表示图像的一部分。

  4. Transformer解码器(Transformer Decoder)

    经过Patchify处理后的特征表示F1和F2分别输入到两个Transformer解码器中,这两个解码器通过交叉注意力机制不断交换信息。交叉注意力机制允许解码器在解码过程中综合两张图像的信息,从而提高点云图的精度。

  5. 回归头(Regression Head)

    Transformer解码器的输出结果传递给两个回归头,分别对应输入的两张图像。回归头负责生成最终的点云图(X1,1和X2,1)和置信度图(C1,1和C2,1)。

  6. 输出

    最终输出的点云图(X1,1和X2,1)和置信度图(C1,1和C2,1)都以第一张图像(I1)的坐标系为基准。这种设计简化了后续的处理步骤,使得点云图可以直接在同一坐标系下进行操作和分析。

训练过程
  • 损失函数
    • 网络使用简单的回归损失函数(公式4)进行训练。损失函数基于预测的点云图和真实点云图之间的欧几里得距离进行计算。
    • 为了应对尺度模糊性,网络对预测和真实的点云图进行归一化处理,通过计算所有有效点到原点的平均距离来确定缩放因子。
    • 网络还会学习为每个像素预测一个置信度分数,这个置信度分数表示网络对该像素预测的可靠程度。最终的训练目标是置信度加权的回归损失。

5 实验评估

5.1 无地图视觉定位

        数据集:使用了Map-free relocalization benchmark,这是一项非常具有挑战性的测试,其中目标是在没有地图的情况下,仅凭一张参考图像确定相机在公制空间中的位置。测试集包括65个验证场景和130个测试场景。每个场景中,每帧视频剪辑的姿势必须相对于单个参考图像独立估计。

        协议:评价标准包括绝对相机姿态准确性(以5°和25厘米为阈值)和虚拟对应重投影误差(VCRE),后者测量虚拟3D点根据真实和估计相机姿态重投影误差的平均欧氏距离。

结果:DUSt3R在测试集上的表现优于所有现有方法,有时优势显著,定位误差小于1米。

5.2 恢复未知相机内参

        数据集:使用了BLUBB数据集来评估DUSt3R在没有内参信息的情况下恢复相机内参的能力。数据集提供了一系列场景,每个场景都具有已知的地面真实相机内参和3D点云。

        协议:评价标准包括相机内参的准确性和重建的3D点云的完整性。DUSt3R通过估计场景的相对姿态和尺度,结合已知的地面真实3D点云来恢复内参。

        结果:在没有先验相机信息的情况下,DUSt3R达到了平均2.7毫米的准确性,0.8毫米的完整性,总体平均距离为1.7毫米。这个精度水平在实际应用中非常有用,考虑到其即插即用的特性。

5.3 总结

        DUSt3R在多个3D视觉任务中展示了其卓越的性能,无需对特定下游任务进行微调。该模型在零样本设置下取得了令人印象深刻的结果,特别是在无地图视觉定位和未知相机内参恢复任务中表现出色。实验结果表明,DUSt3R不仅适用于3D重建任务,还能有效处理各种3D视觉任务,展示了其广泛的应用潜力和实际使用价值。

5.4 可视化

        论文包含了大量可视化内容,有助于理解概念和结果。这些包括流程图、架构细节和重建3D模型的视觉比较。

图3展示了两个场景的重建例子,这两个场景在训练期间从未见过。图像从左到右依次是:RGB图像、深度图、置信度图和重建结果。以下是对每部分的详细解析:

  1. RGB图像:

    • 这是输入的彩色图像,为网络提供了丰富的纹理和颜色信息,帮助进行3D重建。
  2. 深度图:

    • 这是网络预测的深度图,表示场景中每个像素到相机的距离。深度值越大,像素点离相机越远。深度图为重建提供了基础的几何信息。
  3. 置信度图:

    • 置信度图表示网络对每个像素深度预测的信心。高置信度区域通常表示预测较为准确的区域,而低置信度区域可能包含难以预测的部分,如天空、透明物体或反光表面。
  4. 重建结果:

    • 左边的场景显示了直接从网络f(I1, I2)输出的原始结果。可以看到,网络已经能够较为准确地重建场景的3D形状。
    • 右边的场景显示了经过全局对齐(第3.4节)的结果。全局对齐步骤进一步优化了重建结果,使其更加精确和一致。

通过展示这些结果,图3强调了DUSt3R方法在不同场景中的鲁棒性和有效性,尤其是其在未见过的场景中的表现。此外,置信度图的引入使得网络能够在不确定区域进行自适应调整,提高了重建的整体质量。

结论

        DUSt3R在几何3D视觉领域提供了显著的进步。其简化流程、结合鲁棒性和高效性,使其成为计算机视觉研究人员和从业者的宝贵工具。详细的实验评估和全面的可视化进一步加强了论文的贡献。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1891656.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

错误 [WinError 10013] 以一种访问权限不允许的方式做了一个访问套接字的尝试 python ping

报错提示:错误 [WinError 10013] 以一种访问权限不允许的方式做了一个访问套接字的尝试 用python做了一个批量ping脚本,在windows专业版上没问题,但是到了windows服务器就出现这个报错 解决方法:右键 管理员身份运行 这个脚本 …

电子工程与网络技术解析

🍎个人博客:个人主页 🏆个人专栏:日常聊聊 ⛳️ 功不唐捐,玉汝于成 目录 正文 1、MUX&PD是什么意思 2、Hub 和HUB有什么区别 3、Redriver什么意思 4、Switch是什么意思 5、USB 2.0 ETHERNET2什么意思 6、…

Ubuntu18.04新安装--无网络连接、重启黑屏解决教程

一、安装Ubuntu Ubuntu安装需要U盘作为启动盘,在目前教新的电脑中选中GPT作为分区,制作启动盘,其中在安装双系统Ubuntu时,以自定义格式作为存储空间。详细安装过程以以及如何分区请参考下列链接:内含详细安装过程&…

教育场景中的自动化分拣系统!基于大象机器人UltraArm P340机械臂和传送带的实现

引言 今天我们将展示一个高度自动化的模拟场景,展示多个机械臂与传送带协同工作的高效分拣系统。在这个场景中,机械臂通过视觉识别技术对物体进行分类,并通过精确的机械操作将它们放置在指定的位置。这一系统不仅提高了分拣的速度和准确性&am…

Vue el-table列合并

1.封装公用方法 const dataMethod (data, isH []) > {let spanObj {}; // 存储每个key 对应的合并值let pos {}; // 存储的是 key合并值得索引// 循环数据for (let i 0; i < data.length; i) {let dataI data[i];// 循环数据内对象&#xff0c;查看有多少keyfor (…

使用U盘重装系统

目录 一、 制作启动盘 1. 准备一个U盘和一台电脑 2. 下载win10安装包 二、安装操作系统 1. 插入系统安装盘 2. 通过进入BIOS界面进入到我们自己制作的启动盘上 三、安装成功后进行常规设置 一、 制作启动盘 1. 准备一个U盘和一台电脑 注意&#xff1a;提前备份好U盘内的…

九浅一深Jemalloc5.3.0 -- ⑧浅*free

目前市面上有不少分析Jemalloc老版本的博文&#xff0c;但最新版本5.3.0却少之又少。而且5.3.0的架构与5之前的版本有较大不同&#xff0c;本着“与时俱进”、“由浅入深”的宗旨&#xff0c;我将逐步分析最新release版本Jemalloc5.3.0的实现。 另外&#xff0c;单讲实现代码是…

PyTorch环境配置及安装

PyTorch环境配置及安装 Step1&#xff1a;安装Anaconda 参考该链接&#xff08;视频01:30--03:00为安装教程&#xff09;&#xff1a; 【PyTorch深度学习快速入门教程&#xff08;绝对通俗易懂&#xff01;&#xff09;【小土堆】】 https://www.bilibili.com/video/BV1hE41…

04通俗理解自注意力机制(self-attention)

04浅谈自注意力机制&#xff08;self-attention&#xff09; 1. 基本概念 注意力机制 是Transformer模型的核心。它的作用是让模型能够“关注”输入数据的不同部分&#xff0c;而不是一次只处理一个词。比如&#xff0c;当模型在处理一句话时&#xff0c;它可以同时考虑句子中…

AntV学习笔记

文章目录 G6 图可视化引擎简单上手复杂一点的案例 S2 多维交叉分析表格简单的一个vue3使用S2的例子 G6 图可视化引擎 G6 是一个简单、易用、完备的图可视化引擎&#xff0c;它在高定制能力的基础上&#xff0c;提供了一系列设计优雅、便于使用的图可视化解决方案。能帮助开发者…

【数据集】最近开源的一些多模态图表理解数据集

1. CharXiv 现有数据集通常关注过于简化和同质化的图表&#xff0c;并且问题往往基于模板生成&#xff0c;这导致了对MLLMs图表理解能力的过度乐观评估。为了解决这个问题&#xff0c;作者提出了一个新的评估套件CharXiv&#xff0c;它包含了从arXiv论文中精选的2323个自然、具…

昇思25天学习打卡营第10天|linchenfengxue

基于MobileNetv2的垃圾分类 通过读取本地图像数据作为输入&#xff0c;对图像中的垃圾物体进行检测&#xff0c;并且将检测结果图片保存到文件中。 MobileNetv2模型原理介绍 MobileNet网络是由Google团队于2017年提出的专注于移动端、嵌入式或IoT设备的轻量级CNN网络&#x…

【产品运营】Saas的核心六大数据

国内头部软件公司的一季度表现惨不忍睹&#xff0c;为啥美国的还那么赚钱呢&#xff1f;其实核心是&#xff0c;没几个Saas产品经理是看数据的&#xff0c;也不知道看啥数据。 SaaS 行业&#xff0c;天天抛头露面、名头叫的响的 SaaS 产品&#xff0c;真没有几个赚钱的。 那为…

# mysql 中文乱码问题分析

mysql 中文乱码问题分析 一、问题分析&#xff1a; MySQL 中文乱码通常是因为字符集设置不正确导致的。MySQL 有多种字符集&#xff0c;如 latin1、utf8、utf8mb4 等&#xff0c;如果在创建数据库、数据表或者字段时没有指定正确的字符集&#xff0c;或者在插入数据时使用了与…

Excel中按列的首行字母顺序,重新排列(VBA脚本)

排序前 要求对4列数据按照第一行abcd的顺序排列 VB脚本如下&#xff1a; 要使用这个脚本&#xff0c;请按照以下步骤操作&#xff1a; 打开Excel&#xff0c;然后按下 Alt F11 打开VBA编辑器。在VBA编辑器中&#xff0c;选择“插入” > “模块”&#xff0c;在打开的模块…

C语言课设--读取文件并统计数据

读取文件并统计数据 // 统计记事本英文字符数 //功能 &#xff1a; 读 文件 a.txt 统计出各种 数字 大写字母 小写字母 0~9 A~Z a ~z各有多少个 程序主体框架如下&#xff1a; #include<stdio.h> int a[128]{0};//其中数组元素a[i]保存 ASCII 码为i的字符的数量 v…

安装Intel Realsense D435i驱动与ROS包报错

1.下载安装realsense SDK 1.1 安装依赖 sudo apt install libudev-dev pkg-config libgtk-3-dev sudo apt install libusb-1.0-0-dev pkg-config sudo apt install libglfw3-dev sudo apt install libssl-dev1.2 权限 cd librealsense/ sudo cp config/99-realsense-libusb.…

7 动态规划

下面的例子不错&#xff1a; 对于动态规划&#xff0c;能学到不少东西&#xff1b; 你要清楚每一步都在做什么&#xff0c;划分细致就能够拆解清楚&#xff01; xk​​​​​​​. - 力扣&#xff08;LeetCode&#xff09; labuladong的算法笔记-动态规划-CSDN博客 动态规划是…

VulnHub靶场之DarkHole_1

1 信息收集 1.1 主机发现 arp-scan -l 主机IP地址为&#xff1a;192.168.1.17 1.2 端口和服务扫描 nmap -sS -sV -A -T5 -p- 192.168.1.17 开放22&#xff0c;80端口 1.3 目录扫描 dirsearch -u 192.168.1.17 2 渗透 2.1 访问端口 2.2 注册账号 暴力破解不现实&#…

大语言模型在时空分析中的能力评估

这篇论文的标题是《STBench: Assessing the Ability of Large Language Models in Spatio-Temporal Analysis》&#xff0c;由Wenbin Li等人撰写。本文提出了一个名为STBench的基准&#xff0c;用于评估大型语言模型&#xff08;LLMs&#xff09;在时空分析中的能力。以下是对论…