排序算法系列一:选择排序、插入排序 与 希尔排序

news2024/12/23 17:33:08

目录

零、说在前面

一、理论部分

1.1:选择排序

1.1.1:算法解读:

1.1.2:时间复杂度

1.1.3:优缺点:

1.1.4:代码:

1.2:插入排序

1.2.1:算法解读:

1.2.2:时间复杂度

1.2.3:优缺点:

1.2.4:代码:

1.3:希尔排序

1.3.1:算法解读:

1.3.2:时间复杂度

1.3.3:优缺点:

1.3.4:代码:

二、对比

2.1:选择与冒泡

2.2:插入与选择

2.3:插入与希尔


零、说在前面

        本文是一个系列,入口请移步这里

一、理论部分

1.1:选择排序

1.1.1:算法解读:

        使用二分法和插入排序两种算法的思想来实现。流程分为“拆分”、“合并”两大部分,前者就是普通的二分思想,将一个数组拆成n个子组;后者是在每个子组内部用插入法排序,在子组间定义一个辅助数组和三个指针,用辅助数组搭配指针选数进行排序,再将两个子组合并;最终将所有子组合并成一个有序的数组。

1.1.2:时间复杂度

        由于该算法使用了双层for循环,分别涉及到 (N-1)*N/2 次的比较和 (N-1)*N/2 次的交换

因此时间复杂度 是 (N-1)*N,即 N^{2}-N,故而时间复杂度为 O(N^{2})

        在最优与最坏情况,二分操作耗时不会节约、归并比较阶段操作耗时不会节约,因此遍历的数据量不变,,因此固定为O(N^{2})

1.1.3:优缺点:

        受该算法的时间复杂度所限,在小数据量时有不错的效率,不适用于大量数据排序。

1.1.4:代码:
/**
 * date:    2024-06-23
 * author:  dark
 * description: 选择排序算法(由小到大)
 */
public class Selection {

    /**
     * 逻辑步骤:1:接受一个数组,从左向右循环遍历数组中每个元素,并将每轮循环得到的最小元素置于本轮循环的起始位置
     * @param arrays
     */
    public void selectSort(Integer[] arrays){
        /**
         * 定义临时变量 和 数组长度
         */
        Integer temp = 0 , arrayLength = arrays.length ;
        /**
         * 从左向右遍历数组元素,获取并将每轮遍历的最小元素置于本轮循环的起始位置。
         */
        for (int i = 0; i < arrayLength; i++) {
            for (int j = i+1; j < arrayLength; j++) {
                if(arrays[i] > arrays[j]){
                    temp = arrays[i];
                    arrays[i] = arrays[j];
                    arrays[j] = temp;
                }
            }
        }
    }
}

1.2:插入排序

1.2.1:算法解读:

        将数组看做左侧有序右侧无序的两部分。初始状态以数组最左侧的一个数据作为已排序组。逐个使用未排序组元素,从右向左地与已排序组元素逐个对比,若未排序的数据小于已排序数据则交换,否则使用未排序组的下一个元素重复上面的操作,直至整个数组有序。

1.2.2:时间复杂度

        由于该算法使用了双层for循环,分别涉及到 (N-1)*N/2 次的比较和 (N-1)*N/2 次的交换

因此时间复杂度 是 (N-1)*N,即 N^{2}-N,故而时间复杂度为 O(N^{2})

        最优情况下数组有序,时间复杂度为 O(N),最坏情况下数据倒序,,时间复杂度为O(N^{2}),平均时间复杂度为 O(N^{2})  (推导过程复杂,需要考虑各种情况的加权平均,因此略过)

1.2.3:优缺点:

        同选择排序。

1.2.4:代码:
/**
 * date:    2024-06-22
 * author:  dark
 * description: 插入排序算法(由小到大)
 */
public class Insertion {

    /**
     * 逻辑步骤:1:接受一个数组,初始状态以其首元素作为“有序组”,其余元素作为“无序组”,并记录有序组和无序组首元素的坐标
     *         2:遍历无序组,每轮遍历只取无序组左侧首元素,以从右向左的顺序与有序组中的各个元素进行比对
     *            当无需组首元素小于有序组元素,交换二者位置,直至有序组达到首元素或有序组再无元素大于无序组首元素,退出遍历
     *         3:将无序组首元素坐标右移,重复步骤2的操作,直至无序组中没有元素。
     * @param arrays
     */
    public void insertionSort(Integer[] arrays){
        /**
         * 定义临时交换变量
         */
        Integer temp;
        /**
         * 遍历无序组
         */
        for(int i= 1; i < arrays.length; i++){
            /**
             * 将无序组的首元素从右向左逐个与有序组比对,若首元素更小则交换,直至首元素大于有序组某元素或到达有序组首位
             * i 代表无序组的首元素,j 代表有序组的末元素
             */
            for (int j = i-1; j >= 0; j--) {
                if(arrays[j+1] < arrays[j]){
                    temp = arrays[j+1];
                    arrays[j+1] = arrays[j];
                    arrays[j] = temp;
                }
                else{
                    break;
                }
            }
        }
    }
}

1.3:希尔排序

1.3.1:算法解读:

        借鉴了分治法的思想,在插入的基础上做了优化。对原数组进行多轮分组,组数据量随着轮次的递增而倍增。同时在每轮都对组内数据进行插入排序,使组数据趋势有序,这为最终一次使用插入排序减少了数据交换的次数。

1.3.2:时间复杂度

        因为用到了分治思想,因此时间复杂度除了与数据量有关,还与遍历次数(即对数据量二分次数 logN )有关,因此时间复杂度为 O(N logN)

        无论最优还是最差情况,遍历的数据量及遍历轮次不变,因此时间复杂度恒定 O(N logN)。而且不会因数据完全有序而减少过多的遍历过程。可以用1~8和8~1 验算一次,执行次数基本无差

1.3.3:优缺点:

        因为用到分治思想,故在大数据量情况下排序表现较好。

1.3.4:代码:
/**
 * date:    2024-06-22
 * author:  dark
 * description: 希尔排序算法(由小到大)
 */
public class Shell {

    /**
     * 逻辑步骤:1:接受一个数组,定义分组步长,设初始值为1,并不断用 步长*2+1 的结果与数组长度比对,直至大于后者作为步长的实际值
     *         2:从数组首元素开始,将与之距离为步长倍数的所有元素视为一组,对这组元素按照插入排序法排序。
     *         3:按上述方法逐个处理整个数组的所有元素
     *         4:将步长减半,重复第2、3步,直至步长减为1。
     * @param arrays
     */
    public void shellSort(Integer[] arrays){
        /**
         * 定义步长、数组长度、临时变量
         */
        int stepLength = 1;
        int arrLength = arrays.length;
        int temp = 0;

        /**
         * 确定stepLength 的初始值
         */
        while (stepLength <= arrLength / 2){
            stepLength = stepLength * 2 + 1;
        }

        /**
         * 逐渐缩小步长,重复执行小组插入排序逻辑
         */
        while(stepLength >= 1){
            /**
             * 用以 stepLength 为首元素的子组作为无序组,以 j-stepLength 为首元素的子组作为有序组。执行插入排序
             */
            for (int j = stepLength; j < arrLength; j+=stepLength) {
                for (int k = j-stepLength; k >=0; k-=stepLength) {
                    if(arrays[k+stepLength] < arrays[k]){
                        temp = arrays[k];
                        arrays[k] = arrays[k+stepLength];
                        arrays[k+stepLength] = temp;
                    }
                    else{
                        break;
                    }
                }
            }
            stepLength /= 2;
        }
    }
}

二、对比

2.1:选择与冒泡

        二者核心算法接近,区别在于后者将每轮循环中得到的最小值规整到了固定位置,有整理收纳的思想在里面。

2.2:插入与选择

        选择排序受其逻辑制约,无论如何都要把本轮剩余的元素都遍历一次,因此其时间复杂度是固定的 O(N平方),但插入排序由于有序组数据的规律性,因此其时间复杂度在最优情况下可以达到O(N)(即初始有序),最坏情况下是O(N平方)(即逆序)

2.3:插入与希尔

        后者通过多次小范围插排,将数据尽可能的规整。我测试生成9万、20万和40万条随机数,然后分别使用希尔和插入排序分别对这些数据的副本进行排序。对比结果前两次希尔稍快(60%和80%左右),第三次希尔略慢(103%左右)。可见,随着数据量的增大,多次插排的时间代价带来的时间损耗就比较明显了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1888420.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

mysql-sql-第十五周

学习目标&#xff1a; sql 学习内容&#xff1a; 41.查询没有学全所有课程的同学的信息 select *from students where students.stunm not in (select score.stunm from score group by score.stunm having count(score.counm) (select count(counm) from course)) 42.查询…

【C++/STL深度剖析】stack和queue的详细概念和使用(图文详解,初学者必看!!)

目录 一、前言 二、stack 的详细解析 &#x1f525; stack的介绍&#x1f525; &#x1f525; stack的构造&#x1f525; &#x1f525; stack的常用接口&#x1f525; &#x1f4a7;push &#x1f4a7;top &#x1f4a7;pop &#x1f4a7;empty &#x1f4a7;size…

违规停放智能监测摄像机

对于现代城市管理来说&#xff0c;违规停放智能监测摄像机正逐渐成为解决交通拥堵和城市管理难题的重要工具。这类摄像机通过先进的视觉识别和数据分析技术&#xff0c;有效监控和管理道路上的车辆停放行为&#xff0c;对提升城市交通运行效率和改善市民出行环境具有显著的意义…

pytorch-ResNet18简单复现

目录 1. ResNet block2. ResNet18网络结构3. 完整代码3.1 网络代码3.2 训练代码 1. ResNet block ResNet block有两个convolution和一个short cut层&#xff0c;如下图&#xff1a; 代码&#xff1a; class ResBlk(nn.Module):def __init__(self, ch_in, ch_out, stride):su…

锻炼 读书笔记 番外 身体激素及神经递质

最近在读《锻炼》的时候&#xff0c;对于各种激素很感兴趣&#xff0c;多巴胺、内啡肽、荷尔蒙、肾上腺素、褪黑素、皮质醇、糖化、氧化等等。索性认真梳理下它们是什么&#xff0c;思考当处于心流状态时&#xff0c;人体发生什么样的变化&#xff0c;分泌什么激素&#xff1f;…

Milvus ConnectionRefusedError: how to connect locally

题意&#xff1a;怎样在本地连接到 Milvus 数据库。连接 Milvus 数据库被拒绝的错误 问题背景&#xff1a; I am trying to run a RAG pipeline using haystack & Milvus. 我正在尝试使用 haystack 和 Milvus 运行一个 RAG&#xff08;检索增强型生成&#xff09;管道。 …

10 - Python文件编程和异常

文件和异常 在实际开发中&#xff0c;常常需要对程序中的数据进行持久化操作&#xff0c;而实现数据持久化最直接简单的方式就是将数据保存到文件中。说到“文件”这个词&#xff0c;可能需要先科普一下关于文件系统的知识&#xff0c;对于这个概念&#xff0c;维基百科上给出…

重温被Mamba带火的SSM:HiPPO的一些遗留问题

©PaperWeekly 原创 作者 | 苏剑林 单位 | 科学空间 研究方向 | NLP、神经网络 书接上文&#xff0c;在上一篇文章《重温被Mamba带火的SSM&#xff1a;线性系统和HiPPO矩阵》中&#xff0c;我们详细讨论了 HiPPO 逼近框架其 HiPPO 矩阵的推导&#xff0c;其原理是通过正交…

MySQL的Geometry数据处理之WKB方案

MySQL的Geometry数据处理之WKT方案&#xff1a;https://blog.csdn.net/qq_42402854/article/details/140134357 MySQL的Geometry数据处理之WKT方案中&#xff0c;介绍WTK方案的优点&#xff0c;也感受到它的繁琐和缺陷。比如&#xff1a; 需要借助 ST_GeomFromText和 ST_AsTex…

Gradio 教程四:Building Generative AI Applications with Gradio

文章目录 一、使用interface构建NLP应用1.1 构建文本摘要应用1.1.1 设置API密钥1.1.2 调用文本摘要API1.1.3 运行本地模型获取响应1.1.4 使用interface构建应用 1.2 构建命名实体识别应用1.2.1 调用NER任务API1.2.2 使用interface构建应用1.2.3 加入额外函数&#xff0c;合并to…

C语言实战 | 用户管理系统

近期推出的青少年防沉迷系统&#xff0c;采用统一运行模式和功能标准。在“青少年模式”下&#xff0c;未成年人的上网时段、时长、功能和浏览内容等方面都有明确的规范。防沉迷系统为青少年打开可控的网络空间。 01、综合案例 防沉迷系统的基础是需要一个用户管理系统管理用户…

Unity3d C#实现基于UGUI ScrollRect的轮播图效果功能(含源码)

前言 轮播功能是一种常见的页面组件&#xff0c;用于在页面中显示多张图片/素材并自动或手动进行切换&#xff0c;以提高页面的美观度和用户体验。主要的功能是&#xff1a;自动/手动切换;平滑的切换效果;导航指示器等。可惜Unity的UGUI系统里没有现成的实现该功能&#xff0c…

[Labview] 改写表格内容并储存覆盖Excel

在上一个功能的基础上&#xff0c;新增表格改写保存功能 [Labview] Excel读表 & 输出表单中选中的单元格内容https://blog.csdn.net/Katrina419/article/details/140120584 Excel修改前&#xff1a; 修改保存后&#xff0c;动态改写储存Excel&#xff0c;并重新写入新的表…

使用antd的<Form/>组件获取富文本编辑器输入的数据

前端开发中&#xff0c;嵌入富文本编辑器时&#xff0c;可以通过富文本编辑器自身的事件处理函数将数据传输给后端。有时候&#xff0c;场景稍微复杂点&#xff0c;比如一个输入页面除了要保存富文本编辑器的内容到后端&#xff0c;可能还有一些其他输入组件获取到的数据也一并…

Go - 8.func 函数使用

目录 一.引言 二.func 定义 三.func 实践 1.多个返回值 2.命名返回值 3.可变参数 四.总结 一.引言 函数是编程语言中的基本构建块&#xff0c;用于将代码组织成可重用的逻辑单元。函数可以接受输入参数&#xff0c;执行特定的操作&#xff0c;并返回结果。在 Go 语言&a…

设计IC行业SAP软件如何处理芯片成本计算

在集成电路(IC)设计与制造行业中&#xff0c;精确的成本计算对于维持健康的财务状况、优化生产流程以及保持市场竞争力至关重要。SAP软件&#xff0c;作为一种全面的企业资源规划(ERP)解决方案&#xff0c;为IC行业提供了强大且灵活的成本计算工具。以下是SAP软件如何处理芯片成…

【python】OpenCV—Feature Detection and Matching

参考学习来自OpenCV基础&#xff08;23&#xff09;特征检测与匹配 文章目录 1 背景介绍2 Harris角点检测3 Shi-Tomasi角点检测4 Fast 角点检测5 BRIEF 特征描述子6 ORB(Oriented Fast and Rotated Brief) 特征描述子7 SIFT(Scale Invariant Feature Transform) 特征描述子8 SU…

​​​​​​​​​​​​​​Spark Standalone集群环境

目录 Spark Standalone集群环境 修改配置文件 【workers】 【spark-env.sh】 【配置spark应用日志】 【log4j.properties】 分发到其他机器 启动spark Standalone 启动方式1&#xff1a;集群启动和停止 启动方式2&#xff1a;单独启动和停止 连接集群 【spark-shel…

基于Hadoop平台的电信客服数据的处理与分析③项目开发:搭建基于Hadoop的全分布式集群---任务1:运行环境说明

任务描述 项目的运行环境是基于Hadoop的全分布式模式集群。 任务的主要内容是规划集群节点及网络使用&#xff0c;准备初始环境&#xff0c;关闭防火墙和Selinux。 任务指导 1. 基于Hadoop的全分布式模式集群&#xff0c;如下图所示&#xff1b; 2. 硬软件环境&#xff1a;…

Android性能优化面试题经典之ANR的分析和优化

本文首发于公众号“AntDream”&#xff0c;欢迎微信搜索“AntDream”或扫描文章底部二维码关注&#xff0c;和我一起每天进步一点点 造成ANR的条件 以下四个条件都可以造成ANR发生&#xff1a; InputDispatching Timeout&#xff1a;5秒内无法响应屏幕触摸事件或键盘输入事件 …