深入剖析vLLM:大模型计算加速系列之调度器策略探索

news2024/11/15 6:45:17

原文:
图解大模型计算加速系列:vLLM源码解析2,调度器策略(Scheduler)

目录

收起

前期提要与本期导览

一、入口函数

二、SequenceGroup

2.1 原生输入

2.2 SequenceGroup的作用

2.3 SequenceGroup的结构

三、add_request():将seq_group添加进调度器waiting队列

四:step():调度器策略

4.1 调度器结构

4.2 整体调度流程

4.3 _passed_delay:判断调度waiting队列的时间点

4.4 can_allocate:能否为seq_group分配物理块做prefill

4.5 can_append_slot:能否为seq_group分配物理块做decode

4.6 allocate与append_slot:为seq_group分配物理块

4.7 preempt:抢占策略

4.8 调度器核心代码

五、总结

大家好,vLLM源码解读第二期更新了,本期我们一起来解读vLLM的调度器策略。

由于vLLM代码本身的复杂性,逻辑上的嵌套性,使得我在读源码时,先接收到的是碎片化的东西,当代码一长、细节一多时,就很难把碎片化的东西拼成全貌。所以在本系列对vLLM的介绍中,不管是哪一块,都会按照“
宏观(图解) -> 细节(配合源码)
”的方式,
先理清vLLM在这里想做什么事,为什么要这么做,然后再一起来看各小块的代码实现。

【大模型计算加速系列】

猛猿:图解大模型计算加速系列:FlashAttention V1,从硬件到计算逻辑

猛猿:图解大模型计算加速系列:Flash Attention V2,从原理到并行计算

猛猿:图解Mixtral 8 * 7b推理优化原理与源码实现

猛猿:图解大模型计算加速系列之:vLLM核心技术PagedAttention原理

猛猿:图解大模型计算加速系列:vLLM源码解析1,整体架构

猛猿:图解大模型计算加速系列:vLLM源码解析2,调度器策略(Scheduler)

【历史文章汇总】

猛猿:【必看】历史技术文章导航


前期提要与本期导览

在上一篇关于vLLM代码整体架构的文章中,我们提到过无论是“
离线批处理(同步)
”还是“
在线流式服务(异步)
”,它们都采用了同一个推理内核引擎
LLMEngine
,其整体架构如下:

其中:

  • 在每1个推理阶段中,调度器(Scheduler)
    决定哪些请求可以参与推理,并为这些请求做好逻辑块->物理块的映射。
  • 在每1个推理阶段中,分布式执行者
    (图中Distributed Workers部分,根据代码,我们将其命名为
    model_executor
    会更加合适)接收调度器传来的这些请求,分发到各个worker上去做推理。Worker中的CacheEngine负责实际管理KV Cache;Worker中的model负责加载模型、实行推理,PagedAttention相关的实现和调用就在model下。

**这里,每1个推理阶段的定义是:prefill算1个推理阶段,每个decode各算1个推理阶段。在本文中,我们统一用

step

来表示“1个推理阶段”。**

  • 在本文中,我们会详细解读调度器(Scheduler)全部细节;
  • 在下一篇文章中,我们会详细解读块管理(blockmanager)的全部细节,并以parallel sampling,beam search和prefix caching为例,将上图左半部分全部串一遍
  • 在后续文章中,我们会来解读上图右半部分细节(还没来得及拆逻辑,暂时不知道会写几篇)

由于块管理者和调度器在代码上逻辑层层嵌套,所以为了不影响大家对调度器的理解,涉及到块管理者的部分,本文也会给出尽量简明清晰的说明。

一、入口函数

在源码架构篇中我们提过,本系列的介绍思路是:
以“离线批处理”作为入口,详细解说内核引擎LLMEngine的各块细节。在此基础上我们再来看“在线流式服务”的运作流程
。所以现在,我们先来回顾下离线批处理的
调用方式

from vllm import LLM, SamplingParams

# ===========================================================================
# batch prompts
# ===========================================================================
prompts = ["Hello, my name is",
           "The president of the United States is",
           "The capital of France is",
           "The future of AI is",]

# ===========================================================================
# 采样参数
# ===========================================================================
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

# ===========================================================================
# 初始化vLLM offline batched inference实例,并加载指定模型
# ===========================================================================
llm = LLM(model="facebook/opt-125m")

# ===========================================================================
# 推理
# ===========================================================================
outputs = llm.generate(prompts, sampling_params)

# ===========================================================================
# 对每一条prompt,打印其推理结果
# ===========================================================================
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

有两点需要注意:

  • llm = LLM(model="facebook/opt-125m")
    :实例化了一个离线批处理的vLLM对象。其本质是实例化了一个内核引擎LLMEngine对象。
    在执行这个步骤时,LLMEngine会执行一次模拟实验(profiling),来判断需要在gpu上预留多少的显存空间给KV Cache block
    (模拟实验的流程参见源码篇1的3.2节,TODO,大家可以对照着来读源码,本文不再涉及这块源码细节)。
  • 推理入口在第24行
    outputs = llm.generate(prompts, sampling_params)
    。现在我们进入LLM类下,来看这个
    generate
    函数,代码如下:
# vllm/entrypoints/llm.py
class LLM:
    """An LLM for generating texts from given prompts and sampling parameters.
       ...
    """

    def __init__(
        self,
        model: str,
        tokenizer: Optional[str] = None,
        tokenizer_mode: str = "auto",
        trust_remote_code: bool = False,
        tensor_parallel_size: int = 1,
        dtype: str = "auto",
        quantization: Optional[str] = None,
        revision: Optional[str] = None,
        tokenizer_revision: Optional[str] = None,
        seed: int = 0,
        gpu_memory_utilization: float = 0.9,
        swap_space: int = 4,
        enforce_eager: bool = False,
        max_context_len_to_capture: int = 8192,
        disable_custom_all_reduce: bool = True,
        **kwargs,
    ) -> None:
        ...
        # ==============================================================================
        # 使用配置好的engine参数,初始化LLMEngine实例
        # ==============================================================================
        self.llm_engine = LLMEngine.from_engine_args(
            engine_args, usage_context=UsageContext.LLM_CLASS)
        # ==============================================================================
        # 用于全局唯一的request_id,
        # 在vLLM中内核引擎的处理中,1个prompt视为1个request,分配全局唯一的request_id
        # ==============================================================================
        self.request_counter = Counter()
        
        ...

    def generate(
        self,
        prompts: Optional[Union[str, List[str]]] = None, 
        sampling_params: Optional[SamplingParams] = None,
        prompt_token_ids: Optional[List[List[int]]] = None, 
        use_tqdm: bool = True,
        lora_request: Optional[LoRARequest] = None,
        multi_modal_data: Optional[MultiModalData] = None,
    ) -> List[RequestOutput]:
        """Generates the completions for the input prompts.

        NOTE: This class automatically batches the given prompts, considering
        the memory constraint. For the best performance, put all of your prompts
        into a single list and pass it to this method.

        Args:
            prompts: prompts可以是str,也可以是list[str]
            sampling_params: 采样超参,例如温度、top_k等;如果为None则使用vLLM默认的参数
            prompt_token_ids: prompt对应的token_id,如果没有提供的话,vllm会调用tokenizer进行                               转换
            use_tqdm: 是否要展示process bar
            lora_request: 如果想请求特定的lora_adapter,可以将它的path等信息包装在该请求中,
                          但vLLM建议尽量不要使用这种方式,因为私有的lora adapter可能会带来一些
                          安全性的问题        
            multi_modal_data: 多模态相关的数据

        Returns:
            A list of `RequestOutput` objects containing the generated
            completions in the same order as the input prompts.
        """
        if prompts is None and prompt_token_ids is None:
            raise ValueError("Either prompts or prompt_token_ids must be "
                             "provided.")

        if isinstance(prompts, str):
            # Convert a single prompt to a list.
            prompts = [prompts]
        if (prompts is not None and prompt_token_ids is not None
                and len(prompts) != len(prompt_token_ids)):
            raise ValueError("The lengths of prompts and prompt_token_ids "
                             "must be the same.")
        
        if sampling_params is None:
            # Use default sampling params.
            sampling_params = SamplingParams()

        if multi_modal_data:
            multi_modal_data.data = multi_modal_data.data.to(torch.float16)

        # ============================================================================
        # 将request添加到engine中
        # 在vLLM内核运算逻辑中,1个prompt算1个request,需要有1个全局唯一的request_id
        # ============================================================================
        num_requests = len(prompts) if prompts is not None else len(
            prompt_token_ids)
        for i in range(num_requests):
            prompt = prompts[i] if prompts is not None else None
            token_ids = None if prompt_token_ids is None else prompt_token_ids[
                i]
            # =======================================================================
            # 将每个prompt添加进LLMEngine中,_add_request具体做了以下几件事:
            # - 将每个prompt处理成特定的输入类型(SequenceGroup实例,后文会细说)
            # - 将每个prompt加入Scheduler的waiting队列,等待处理
            # =======================================================================
            self._add_request(
                prompt,
                sampling_params,
                token_ids,
                lora_request=lora_request,
                # Get ith image while maintaining the batch dim.
                multi_modal_data=MultiModalData(
                    type=multi_modal_data.type,
                    data=multi_modal_data.data[i].unsqueeze(0))
                if multi_modal_data else None,
            )
        
        # ============================================================================
        # 把这个batch的所有prompt都添加完后,执行推理,详情参见_run_engine
        # ============================================================================
        return self._run_engine(use_tqdm)

    def _add_request(
        self,
        prompt: Optional[str],
        sampling_params: SamplingParams,
        prompt_token_ids: Optional[List[int]],
        lora_request: Optional[LoRARequest] = None,
        multi_modal_data: Optional[MultiModalData] = None,
    ) -> None:
        # 每个prompt赋1个request_id
        request_id = str(next(self.request_counter))
        self.llm_engine.add_request(request_id,
                                    prompt,
                                    sampling_params,
                                    prompt_token_ids,
                                    lora_request=lora_request,
                                    multi_modal_data=multi_modal_data)

    def _run_engine(self, use_tqdm: bool) -> List[RequestOutput]:
        # Initialize tqdm.
        if use_tqdm:
            num_requests = self.llm_engine.get_num_unfinished_requests()
            pbar = tqdm(total=num_requests,
                        desc="Processed prompts",
                        dynamic_ncols=True)
        
        # ===========================================================================
        # 如果当前调度器中还有没完成推理的请求(调度器中waiting/running/swapped任一队列非空)
        # ===========================================================================
        outputs: List[RequestOutput] = []
        while self.llm_engine.has_unfinished_requests():
            # =========================================================================
            # 执行1次推理调度(step),决定哪些请求的数据可以参与到这次推理中
            # =========================================================================
            step_outputs = self.llm_engine.step()
            for output in step_outputs:
                # =====================================================================
                # 如果本step后,有请求已经完成了推理,就将推理结果装进outputs中
                # =====================================================================
                if output.finished:
                    outputs.append(output)
                    if use_tqdm:
                        pbar.update(1)
        if use_tqdm:
            pbar.close()
        # Sort the outputs by request ID.
        # This is necessary because some requests may be finished earlier than
        # its previous requests.
        outputs = sorted(outputs, key=lambda x: int(x.request_id))
        return outputs

总结来说,当我们调用·
outputs = llm.generate(prompts, sampling_params)
时,
它实际做了两件事情:

  • _add_request

    将输入数据传给LLMEngine
    ,它具体做了如下事情:

    • 把每1个prompt包装成一个SequenceGroup对象
      。从客户端角度看,1个请求可能包含多个prompts,例如离线批处理场景下你可以将1个batch理解成1个请求;但是从LLMEngine的角度看,1个prompt是1个请求,所以它会对输入数据进行预处理。在后文对SequenceGroup的讲解中,我们会来看vLLM这样做的意义。
    • 把包装成SequenceGroup对象的数据加入调度器(Scheduler)的waiting队列,等待处理
      。这一块相关的细节,我们放在后文说。
  • _run_engine

    执行推理
    。只要调度器的waiting/running/swapped队列非空,我们就认为此时这批batch还没有做完推理,这时我们就会
    调用LLMEngine的step()
    函数,来完成1次调度以决定要送哪些数据去做推理。

所以,想要知道调度器的运作流程,我们只要从
LLMEngine

add_request()

step()
两个函数入手就好了


不过在正式进入这两个函数的讲解之前,我们先来看和输入数据一个问题:为什么要把每个prompt都包装成一个SequenceGroup实例?SequenceGroup又长什么样呢?

二、SequenceGroup

2.1 原生输入

在一般的推理场景中,
我们通常给模型传1个prompt及相关的采样参数
,让模型来做推理。此时你的输入可能长下面这样:

("To be or not to be,",
SamplingParams(temperature=0.8, top_k=5, presence_penalty=0.2)),

但在其余的场景中,模型decoding的策略可能更加复杂
,例如:

  • Parallel Sampling
    :你传给模型1个prompt,希望模型基于这个这个prompt,给出n种不同的output
  • Beam Search
    :你传给模型1个prompt,在采用Beam Search时,每个推理阶段你都会产出top k个output,其中k被称为Beam width(束宽)。

这些情况下,你传给模型的输入可能长下面这样:

# Parallel Sampling
("What is the meaning of life?",
SamplingParams(n=2, temperature=0.8, top_p=0.95, frequency_penalty=0.1))

# Beam Search (best_of = 束宽)
("It is only with the heart that one can see rightly",
SamplingParams(n=3, best_of=3, use_beam_search=True, temperature=0.0)),

【备注:SamplingParams遵从OpenAI API范式,对其中各种参数的解释可参见
OpenAI官方文档

总结来说,可能出现"1个prompt -> 多个outputs"的情况。那是否能设计一种办法,对1个prompt下所有的outputs进行集中管理,来方便vLLM更好做推理呢?

2.2 SequenceGroup的作用
  • "1个prompt -> 多个outputs"这样的结构组成一个
    SequenceGroup
    实例。
  • 其中每组"prompt -> output"组成一个序列(seq,属于
    Sequence
    实例),每个seq下有若干状态(status)属性,包括:
    • WAITING

      正在waiting队列中。waiting队列中的序列都没有做过prefill。
    • RUNNING

      正在running队列中,即已经开始做推理。
    • SWAPPED

      正在swapped队列中,表示此时gpu资源不足,相关的seq_group被抢占,导致其暂停推理,相关的KV block被置换到cpu上(swap out),等待gpu资源充足时再置换回来重新计算(swap in)。
    • 若干和Finish相关的状态
      ,表示该seq推理已经结束,具体包括:
      • FINISHED_STOPPED

        正常执行完毕,例如碰到
        <eos>
        符号,该seq的推理正常结束了
      • FINISHED_LENGTH_CAPPED
        :因为seq的长度达到最大长度限制,而结束推理
      • FINISHED_ABORTED
        :因不正常状态,而被终止的推理。例如客户端断开连接,则服务器会终止相关seq的推理
      • FINISHED_IGNORED
        :因prompt过长而被终止执行的推理。本质上也是受到长度限制
  • 在vLLM中有一个重要假设:一个seq_group中的所有seq共享1个prompt。

我们来通过一个具体的例子,更好感受一下SequenceGroup的作用:

  • 在推理开始之前
    ,这个seq_group下只有1条seq,它就是prompt,状态为waiting。
  • 在第1个推理阶段
    ,调度器选中了这个seq_group,由于它的采样参数中
    n = 4
    ,所以在做完prefill之后,它会生成4个seq,它们的状态都是running。
  • 在若干个推理阶段后,gpu上的资源不够了,这个seq_group不幸被调度器抢占(preemption)
    ,它相关的KV block也被swap out到cpu上。此时所有seq的状态变为swapped。这里要注意,
    当一个seq_group被抢占时,对它的处理有两种方式:
    • Swap:如果该seq_group下的seq数量 > 1,此时会采取swap策略
      ,即把seq_group下【所有】seq的KV block从gpu上卸载到cpu上。(seq数量比较多,直接把算出的KV block抛弃,比较可惜)
    • Recomputation:如果该seq_group下的seq数量 = 1,此时会采取recomputation策略
      ,即把该seq_group相关的物理块都释放掉,然后将它重新放回waiting队列中。等下次它被选中推理时,就是从prefill阶段开始重新推理了,因此被称为“重计算”。(seq数量少,重新计算KV block的成本不高)

【注意,并不是每个seq_group都会经历抢占,具体要看调度器策略和gpu资源使用情况】

  • 又过了若干个推理阶段,gpu上的资源又充足了,此时执行swap in操作
    ,将卸载到cpu上的KV block重新读到gpu上,继续对该seq_group做推理,此时seq的状态又变为running。
  • 又过了若干个推理阶段,该seq_group中有1个seq已经推理完成了,它的状态就被标记为finish
    ,此后这条已经完成的seq将不参与调度。
  • 又过了若干个推理阶段,这个seq_group下所有的seq都已经完成推理了
    ,这样就可以把它作为最终output返回了。

相信通过这个例子,我们已经能更好理解为什么vLLM要把1个prompt包装成SequenceGroup实例了。接下来我们就来看SequenceGroup实例的具体结构。

2.3 SequenceGroup的结构

SequenceGroup相关的脚本在
vllm/sequence.py
中,下图给出了SequenceGroup的结构图解(
仅列出重要的属性和方法
):

(1)结构总述

SequenceGroup:

  • self.seqs_dict
    :{seq_id: seq},其中每个seq是一个Sequence对象。正如我们前文介绍的那样,一个seq_group下包含若干seqs
  • self.sampling_params
    :采样参数
  • self.metrics

    记录该seq_group相关的指标,例如该seq_group是什么时候被加入LLMEngine的(arrival_time)
    ,该seq_group第一次被调度器选中调度是什么时候等等。调度器在选择时,会参考seq_groups们的这些指标来做决策。
  • get_max_num_running_steps

    该seq_group在剩余生命周期内并行running的最大seq数量

    “剩余生命周期”指从此刻一直到seq_group中所有的seq都做完推理
    。举个例子来说,我们看2.2节配图中倒数第3个时刻,此时这个seq_group内所有的seq都还没结束推理,所以若调用这个方法,则返回值为4;再看倒数第2个时刻,此时有1个seq已经完成了推理,所以若调用这个方法,则返回值为3。在后续调度策略代码中,我们将经常看到这个方法被调用,目的是用于估计若当前对一个seq_group做推理,它将消耗多少gpu资源。

我们来详细看下
get_max_num_running_steps
代码实现(一切尽在注释中):

    def get_max_num_running_seqs(self) -> int:
        """The maximum number of sequences running in parallel in the remaining
        lifetime of the request.
        返回请求在其剩余生命周期中并行运行的最大序列数。
        """
        # ============================================================================
        # 若采用beam search,每1个推理阶段都是best_of(束宽)个seq在running
        # ============================================================================
        if self.sampling_params.use_beam_search:
            return self.sampling_params.best_of
        # ============================================================================
        # 如果不采用beam search
        # ============================================================================
        else:
            # =========================================================================
            # 此时best_of默认和n一致,即表示我们希望1个prompt产出n个outputs。因此理论上,这个
            # seq_group下会维护best_of个seq(这就是self.num_seqs()的返回值)。
            # 如果出现best_of > self.num_seqs()的情况,说明该seq_group刚从waiting变成running
            # 准备做推理(参考2.2节配图中左侧第1个时刻),此时对于这个seq_group来说,
            # 其剩余生命周期并行运行的最大seq数量为best_of
            # =========================================================================
            if self.sampling_params.best_of > self.num_seqs():
                # At prompt stage, the sequence group is not yet filled up
                # and only have one sequence running. However, in the
                # generation stage, we will have `best_of` sequences running.
                return self.sampling_params.best_of
            
            # =========================================================================
            # 其余时刻(例如2.2节配图中非左侧第1个时刻的所有时刻)下,我们就返回这个seq_group中
            # 未完成推理的seq数量。根据2.2节介绍,我们知道一个seq的完成状态有四种:
            #   SequenceStatus.FINISHED_STOPPED,
            #   SequenceStatus.FINISHED_LENGTH_CAPPED,
            #   SequenceStatus.FINISHED_ABORTED,
            #   SequenceStatus.FINISHED_IGNORED
            # =========================================================================
            return self.num_unfinished_seqs()

Sequence:

对于一个seq,我们重点来看它的属性
self.logical_token_blocks
(逻辑块)和方法
_append_tokens_to_blocks
(生成逻辑块的方法)。
在vLLM中,每个seq都单独维护一份属于自己的逻辑块,不同的逻辑块可以指向同一个物理块
(此刻你一定很关心逻辑块和物理块是如何做映射的,我们会循序渐进地讲解这点,
现在你可以先忽略映射方法,把目光聚焦于“一个seq的逻辑块长什么样,怎么初始化它的逻辑块”

(2)1个逻辑块的结构

我们先来回答“1个逻辑块长什么样”这个问题
,逻辑块定义的代码比较简单,所以我们直接看代码(一切尽在注释中),代码路径
vllm/block.py

class LogicalTokenBlock:
    """A block that stores a contiguous chunk of tokens from left to right.

    Logical blocks are used to represent the states of the corresponding
    physical blocks in the KV cache.
    
    KV cache的逻辑块
    """

    def __init__(
        self,
        block_number: int, # 逻辑块的序号
        block_size: int, # 每个逻辑块中有多少个槽位(默认为16)
    ) -> None:
        self.block_number = block_number
        self.block_size = block_size

        # 逻辑块刚初始化时,将其中的每个token_id都初始化为_BLANK_TOKEN_ID(-1)
        self.token_ids = [_BLANK_TOKEN_ID] * block_size 
        # 当前逻辑块中已经装下的token的数量
        self.num_tokens = 0

    def is_empty(self) -> bool:
        """判断当前逻辑块是为空"""
        return self.num_tokens == 0

    def get_num_empty_slots(self) -> int:
        """当前逻辑块的空余槽位"""
        return self.block_size - self.num_tokens

    def is_full(self) -> bool:
        """判断当前逻辑块是否已经被装满"""
        return self.num_tokens == self.block_size

    def append_tokens(self, token_ids: List[int]) -> None:
        """将给定的一些token_ids装入当前逻辑块中"""
        # 给定的token_ids的长度必须 <= 当前逻辑块剩余的槽位
        assert len(token_ids) <= self.get_num_empty_slots()
        # 当前逻辑块第一个空槽的序号
        curr_idx = self.num_tokens
        # 将这些tokens装进去
        self.token_ids[curr_idx:curr_idx + len(token_ids)] = token_ids
        # 更新当前逻辑块中tokens的数量
        self.num_tokens += len(token_ids)

    def get_token_ids(self) -> List[int]:
        """获取当前逻辑块中所有被装满的位置的token_ids"""
        return self.token_ids[:self.num_tokens]

    def get_last_token_id(self) -> int:
        """获取当前逻辑块所所有被装满的位置的最后一个token_id"""
        assert self.num_tokens > 0
        return self.token_ids[self.num_tokens - 1]

(3)再回到Sequence上来

知道了每个逻辑块的结构,
我们现在来回答“怎么给一个seq分配逻辑块”这个问题
,也就是回到2.3(1)中Sequence的
_append_tokens_to_blocks
方法上来:
当一个seq只有prompt时,这个方法负责给prompt分配逻辑块;当这个seq开始产出output时,这个方法负责给每一个新生成的token分配逻辑块
,整个过程如下图(图片来自vLLM论文,大家忽略图中block_table的部分):

代码如下(一切尽在注释中,
/vllm/sequence.py
):

    def _append_tokens_to_blocks(self, token_ids: List[int]) -> None:
        """
        将token_ids动态填入逻辑块列表中
        Args:
            token_ids: prompt部分的token_ids
        """
        cursor = 0
        # 遍历prompt token_ids中的每一个token_id
        while cursor < len(token_ids):
            # 如果当前逻辑块列表(logical_token_blocks)为空
            if not self.logical_token_blocks:
                # 则先append一个逻辑块,该逻辑块index为0,大小为16,其中的每一个token_id为-1
                self._append_logical_block()

            # 取出逻辑块列表中的最后一个逻辑块
            last_block = self.logical_token_blocks[-1]
            # 如果这最后一个逻辑块中已经没有槽位
            if last_block.is_full():
                # 那么再append一个逻辑块,其大小为16,其中每一个token_id为-1
                self._append_logical_block()
                # 把这个新append的逻辑块取出来
                last_block = self.logical_token_blocks[-1]
            
            # 检查当前取出的逻辑块中空槽位的数量
            num_empty_slots = last_block.get_num_empty_slots()
            # 用当前的token_ids填充空槽位,直到无法填满为止
            last_block.append_tokens(token_ids[cursor:cursor +
                                               num_empty_slots])
            cursor += num_empty_slots

好,到目前为止,我们就把vLLM对输入数据做预处理的部分介绍完了,简单总结下:

  • 在vLLM内部计算逻辑中,1个prompt是1个request
  • 每个prompt将被包装成一个SequenceGroup实例提供给调度器做调度
  • 1个SequenceGroup实例下维护着若干个Sequence实例,对应着“1个prompt -> 多个outputs"这种更一般性的解码场景。
  • 1个Sequence实例下维护着属于自己的逻辑块列表,数据类型为List[LogicalTokenBlock]

三、add_request():将seq_group添加进调度器waiting队列

写了这么多,你是不是已经忘记上面都说了些什么了,不要紧,我们快速回顾下:

  • 首先,我们明确了vLLM最重要的推理内核引擎是LLMEngine
  • LLMEngine下有两个最重要的方法:
    add_request()

    step()
  • add_request()
    负责将每个prompt都包装成一个SequenceGroup对象,送入调度器的waiting队列中等待调度
  • step()
    负责执行1次推理过程,在这个过程中,调度器首先决定哪些seq_group可以被送去推理,然后model_executor负责实际执行推理。

现在,在知道SequenceGroup相关定义的基础上,我们可以来看
add_request()
了,我们直接来看代码(一切尽在注释中,为了方便阅读,代码有所省略):

# vllm/engine/llm_engine.py
    def add_request(
        self,
        request_id: str, # 每个请求的唯一id
        prompt: Optional[str], # prompt(文字版)
        sampling_params: SamplingParams, # 用于采样的参数(温度、topk等)
        prompt_token_ids: Optional[List[int]] = None, # prompt(input_ids版)
        arrival_time: Optional[float] = None, # 请求到达的时间。如果是None,则用当前系统时间
        lora_request: Optional[LoRARequest] = None,  # 如果是用lora模型做推理,相关的lora请求
        multi_modal_data: Optional[MultiModalData] = None, # 每个请求的多模态数据
    ) -> None:
        """
        将request添加给LLMEngine

        Args:
            request_id: 在vLLM内部,1条prompt算1个请求,会附给1个请求id
            prompt: prompt(文字版)
            sampling_params: 采样参数(温度、topk等)
            prompt_token_ids: prompt(token_id版),没有提供的话vLLM会调用tokenizer来做
            arrival_time: 请求到达的时间。如果是None,则用当前系统时间
            multi_modal_data: 多模态数据(暂时忽略不看)
        """
        ...
        
        # ============================================================================
        # 设置该请求的到达时间
        # ============================================================================
        if arrival_time is None:
            arrival_time = time.time()
        ...

        # 每个KV cache block的大小(默认为16)
        block_size = self.cache_config.block_size
        # 当前seq的id(见后文讲解)
        seq_id = next(self.seq_counter)
        # 获取用于表示<eos>的token_id
        eos_token_id = self.tokenizer.get_lora_tokenizer(
            lora_request).eos_token_id
        
        # ============================================================================
        # 为当前序列创建Sequence对象,在Sequence对象中也包括对当前序列逻辑块们的管理
        # ============================================================================
        seq = Sequence(seq_id, prompt, prompt_token_ids, block_size,
                       eos_token_id, lora_request)
        ...
        # ============================================================================
        # 每个prompt被包装成一个SequenceGroup实例
        # ============================================================================
        seq_group = SequenceGroup(request_id, [seq], sampling_params,
                                  arrival_time, lora_request, multi_modal_data)

        # ============================================================================
        # 将seq_group中所有序列添加进scheduler的self.waiting队列中
        # self.waiting是一个双端队列实例,我们可以在队列的两端进行插入/删除操作
        # ============================================================================
        self.scheduler.add_seq_group(seq_group)

四:step():调度器策略

现在所有的seq_group都已经被送入调度器(Scheduler)的waiting队列中了,
接下来我们就来看,在1个推理阶段中,调度器是通过什么策略来决定要送哪些seq_group去做推理的
,这也是vLLM难啃的硬骨头之一。

调度器相关的代码都在
vllm/core/scheduler.py
中,由于代码逻辑嵌套比较复杂,所以我们依然先通过图解的方式把整个调度流程介绍一遍,然后再看关键的源码细节

4.1 调度器结构

vLLM调度器维护的重要属性如上图所示:

  • self.waiting, self.running, self.swapped
    :这三个都是python的deque()实例(双端队列,允许你从队列两侧添加或删除元素)。

    • waiting队列用于存放所有还未开始做推理的seq_group
      ,“未开始”指连prefill阶段都没有经历过。所以waiting队列中的seq_group只有一个seq,即是原始的prompt。
    • running队列用于存放当前正在做推理的seq_group。更准确地说,它存放的是上1个推理阶段被送去做推理的seq_group们
      ,在开始新一轮推理阶段时,调度器会根据本轮的筛选结果,更新running队列,即决定本轮要送哪些seq_group去做推理。
    • swapped队列用于存放被抢占的seq_group
      。在2.2节中我们有提过,若一个seq_group被抢占,调度器会对它执行swap或recomputation操作,分别对应着将它送去swapped队列或waiting队列,在后文我们会详细分析抢占处理的代码
  • self.policy
    :是vLLM自定义的一个Policy实例,

    目标是根据调度器总策略(
    FCFS
    ,First Come First Serve,先来先服务)原则,
    对各个队列里的seq_group按照其arrival time进行排序
    。相关代码比较好读,所以这里我们只概述它的作用,后续不再介绍它的代码实现。

  • self.prev_time

    上一次调度发起的时间点,初始化为0。
    我们知道每执行1次推理阶段前,调度器都要做一次调度,这个变量存放的就是上次调度发起的时间点。

  • self.prev_prompt
    :取值为True/False,初始化为False。
    若上一次调度时,调度器有从waiting队列中取出seq_group做推理,即为True,否则为False。

  • self.last_prompt_latency

    记录“当前调度时刻(now) - 最后一次有从waiting队列中取数做推理的那个调度时刻”的差值
    (并不是每一次调度时,调度器一定都会从waiting队列中取seq_group,它可能依旧继续对running队列中的数据做推理),初始化为0。

目前你可能很难明白这三个属性的作用,不要着急,在后文讲解具体调度流程时,我们会再来看它们。这里只需记住它们的定义即可。

  • BlockManager

    物理块管理器
    。这也是vLLM自定义的一个class。截止本文写作时,vLLM提供了
    BlockSpaceManagerV1

    BlockSpaceManagerV2
    两个版本的块管理器。V1是vLLM默认的版本,V2是改进版本(但还没开发完,例如不支持prefix caching等功能)。所以本文依然基于
    BlockSpaceManagerV1
    进行讲解。物理块管理器这个class下又维护着两个重要属性:
    • BlockAllocator
      :物理块分配者,负责实际为seq做物理块的分配、释放、拷贝等操作。

      这也是我们后文要解读的对象。其下又分成
      self.gpu_allocator

      self.cpu_allocator
      两种类型,分别管理gpu和cpu上的物理块。
    • self.block_tables
      :负责维护每个seq下的物理块列表,本质上它是一个字典,形式如
      {seq_id: List[PhysicalTokenBlock]}

      注意,这里维护者【所有】seq_group下seq的物理块,而不是单独某一个seq的。因为整个调度器都是全局的,其下的BlockManager自然也是全局的。

读到这里,
你还记得2.3节中我们曾介绍过,每个Sequence实例中维护着属于这个seq的逻辑块吗?而我们从self.block_tables中,又能根据seq_id找到这个seq对应的物理块。这就实现了“逻辑块 -> 物理块”的映射
。在刚开始读代码的时候,很多朋友从直觉上都会觉得
BlockManager
就是用来存储逻辑块和物理块映射的,其实它
只负责管理和分配物理块,映射关系潜藏在seq中
。理解这点对理解代码非常重要。

现在,我们就把调度器(Scheduler)的结构理清了。我知道你肯定还有很多疑惑。所以我们马上来看调度策略的具体流程:
“对于装在waiting、running、swapped队列中的那些seq_group,是根据什么规则决定本次推理阶段该送谁去推理呢?”

4.2 整体调度流程

上图刻画了某次调度步骤中三个队列的情况,再复习一下:

  • waiting队列
    中的数据都没有做过prefill,每个seq_group下只有1个seq(prompt)
  • running队列
    中存放着上一个推理阶段被送去做推理的所有seq_group
  • swapped队列
    中存放着之前调度阶段中被抢占的seq_group

running队列中的seq_group不一定能继续在本次调度中被选中做推理
,这是因为gpu上KV cache的使用情况一直在变动,以及waiting队列中持续有新的请求进来的原因。所以调度策略的职责就是要根据这些变动,对送入模型做推理的数据做动态规划。

根据源码,我将vLLM调度步骤整理成上述流程图。看着有点复杂是吧,不要担心,我们这就来拆解它。

总结来说:

  • 如果当前swapped队列为空,那就去检查是否能从waiting队列中调度seq_group,直到不满足调度条件为止(gpu空间不足,或waiting队列已为空等)

    此时,1个推理阶段中,所有的seq_group都处在prefill阶段。
  • 如果当前swapped队列非空,或者无法从waiting队列中调度任何seq_group时:
    • 检查是否能从running队列中调度seq_group,直到不满足调度条件为止。
    • 若本次无新的被抢占的seq_group,且swapped队列非空,就检查是否能从swapped队列中调度seq_group,直到不满足调度条件为止。

此时,1个推理阶段中,所有的seq_group要么全来自running队列,要么来自running + swapped队列,它们都处在decode阶段。

**至此我们要记住vLLM调度中非常重要的一点:

在1个推理阶段中,所有的seq_group要么全部处在prefill阶段。要么全部处在decode阶段。**

你可能想问:
为什么要以swapped是否非空为判断入口呢?

这是因为,如果当前调度步骤中swapped队列非空,说明在之前的调度步骤中这些可怜的seq_group因为资源不足被抢占,而停滞了推理。所以
根据FCFS规则,当gpu上有充足资源时,我们应该先考虑它们,而不是考虑waiting队列中新来的那些seq_group。

同理,在图中你会发现,当我们进入对running队列的调度时(图中红色分支),我们会根据“
本次调度是否有新的被抢占的seq_group
”,来决定要不要调度swapped队列中的数据。这个理由也很简单:在本次调度中,我就是因为考虑到gpu空间不足的风险,我才新抢占了一批序列。既然存在这个风险,我就最好不要再去已有的swapped队列中继续调度seq_group了。

到这里,我们已经把整个调度流程的关键点给说完了。接下来,我们会配合源码,对上图中的细节进行介绍。

4.3 _passed_delay:判断调度waiting队列的时间点

在4.2的流程图中,我们会看到
进入waiting循环的判断条件之一是:waiting队列是否达到调度间隔阈值
。这是个什么东西?又为什么要设置这样一个阈值呢?

我们知道模型在做推理时,waiting队列中是源源不断有seq_group进来的,一旦vLLM选择调度waiting队列,它就会停下对running/swapped中seq_group的decode处理,转而去做waiting中seq_group的prefill,也即
vLLM必须在新来的seq_group和已经在做推理的seq_group间取得一种均衡:既不能完全不管新来的请求,也不能耽误正在做推理的请求。所以“waiting队列调度间隔阈值”就是来控制这种均衡的:

  • 调度间隔设置得太小
    ,每次调度都只关心waiting中的新请求,这样发送旧请求的用户就迟迟得不到反馈结果。且此时waiting队列中积累的新请求数量可能比较少,不利于做batching,浪费了并发处理的能力。
  • 调度间隔设置得太大
    ,waiting中的请求持续挤压,同样对vLLM推理的整体吞吐有影响。

那这个阈值在代码中是怎么控制的呢?还记得4.1中我们画Scheduler的结构图时有三个乍一看比较难懂的属性吗(见下图),它们就是用来控制这个阈值的:

vllm/core/scheduler.py
脚本的
_passed_delay()
函数写了阈值判断的相关逻辑,我们直接看代码(一切尽在注释中):

    def _passed_delay(self, now: float) -> bool:
        """
        判断当下是否可以从waiting队列中调度新请求
        这个函数确保了在调度过程中不会频繁地处理新来的seq_group
        
        Args:
            now: 当前调度时间点
        """
        # =============================================================================
        # self.prev_prompt: True/False,记录上一次调度步骤中,是否选择了从waiting队列中做调度
        # self.prev_time:上次调度步骤时间点(不管是从哪个队列中调度,每次调度都会记录下时间点)
        # 若上个调度步骤中,我们选择从waiting队列中做调度,则计算两个调度时刻的间隔
        # ==============================================================================
        if self.prev_prompt:
            self.last_prompt_latency = now - self.prev_time
        
        # =============================================================================
        # 用当前调度时间更新prev_time
        # 由于目前还不知道本次是否会从waiting队列中调度,因此prev_prompt先设为False
        # =============================================================================
        self.prev_time, self.prev_prompt = now, False
        
        # =============================================================================
        # Delay scheduling prompts to let waiting queue fill up
        # delay_factor:用户配置的,用于调整调度间隔阈值的因子。大于0则意味着用户想开启阈值判断
        # =============================================================================
        if self.scheduler_config.delay_factor > 0 and self.waiting:
            # =========================================================================
            # 计算在waiting队列中,最早到达的seq_group的到达时间
            # =========================================================================
            earliest_arrival_time = min(
                [e.metrics.arrival_time for e in self.waiting])
            # =========================================================================
            # now - earliest_arrival_time:最早到达waiting队列的seq_group当前“实际”等待的时间
            # delay_factor*last_prompt_latency:最早到达waiting队列的请求当前“应该”等待的时间
            # 只要前者比后者大,或者此时running队列中根本没有请求在跑,就可以进行对waiting做调度
            # =========================================================================
            passed_delay = (
                (now - earliest_arrival_time) >
                (self.scheduler_config.delay_factor * self.last_prompt_latency)
                or not self.running)
        # =============================================================================
        # 如果你不想开启阈值判断,那就直接返回True
        # =============================================================================
        else:
            passed_delay = True
        return passed_delay

4.4 can_allocate:能否为seq_group分配物理块做prefill

通过了调度时间阈值的判断条件,现在我们顺利从waiting中取出一个seq_group,我们将对它进行prefill操作。
所以这里我们必须先判断:gpu上是否有充足的空间为该seq_group分配物理块做prefill
,根据4.1中绘制的调度器结构,这个操作当然是由我们的self.block_manager来做。

判断的入口代码为
can_allocate = self.block_manager.can_allocate(seq_group)
,配合上面图例,我们直接来看
can_allocate
函数的代码,(一切尽在注释中):

    # vllm/core/block_manager_v1.py
    def can_allocate(self, seq_group: SequenceGroup) -> AllocStatus:
        """
        确实是否可以给这个seq_group分配物理块,返回结果有三种情况:
        - AllocStatus.NEVER:不分配;
        - AllocStatus.OK:可以分配;
        - AllocStatus.LATER:延迟分配
        """
        # FIXME(woosuk): Here we assume that all sequences in the group share
        # the same prompt. This may not be true for preempted sequences.
        # (这里我们假设一个seq_group下的所有序列的prompt都是相同的)
        
        # ===========================================================================
        # 取出这个seq_group下处于waiting状态的序列
        # ===========================================================================
        seq = seq_group.get_seqs(status=SequenceStatus.WAITING)[0]
        
        # ===========================================================================
        # 取出这个seq所有的逻辑块
        # ===========================================================================
        num_required_blocks = len(seq.logical_token_blocks)

        # ===========================================================================
        # block上的滑动窗口(可暂时假设其值为None,先忽略不看
        # ===========================================================================
        if self.block_sliding_window is not None:
            num_required_blocks = min(num_required_blocks,
                                      self.block_sliding_window)
        # ===========================================================================
        # 计算当前所有可用的物理块数量,List[PhysicalTokenBlock]
        # ===========================================================================
        num_free_gpu_blocks = self.gpu_allocator.get_num_free_blocks()

        # ===========================================================================
        # Use watermark to avoid frequent cache eviction.
        # 决定是否能为当前seq分配物理块
        # ===========================================================================
        # 如果设备中所有的物理块数量 - 该seq实际需要的物理块数量 < 水位线block数量,则不分配
        # (说明当前seq太长了)
        if (self.num_total_gpu_blocks - num_required_blocks <
                self.watermark_blocks):
            return AllocStatus.NEVER
        # 如果设备中可用的物理块数量 - 该seq实际需要的block数量 >= 水位线block数量,则分配
        if num_free_gpu_blocks - num_required_blocks >= self.watermark_blocks:
            return AllocStatus.OK
        # 否则,现在不能分配,但可以延迟分配
        else:
            return AllocStatus.LATER

我们对上述代码做一些额外的说明:

  • 代码第32行:
    num_free_gpu_blocks = self.gpu_allocator.get_num_free_blocks()
    。这里是在统计当前gpu上所有可用的物理块数数量(忘记gpu_allocator是什么的朋友,可以再回顾下4.1的调度器结构图)。在vLLM中,gpu_allocator的类型有两种:
    • CachedBlockAllocator

      按照prefix caching的思想来分配和管理物理块
      。在原理篇中,我们提过又些prompts中可能含有类似system message(例如,“假设你是一个能提供帮助的行车导航”)E)等prefix信息,带有这些相同prefix信息的prompt完全可以共享用于存放prefix的物理块,这样既节省显存,也不用再对prefix做推理。
    • UncachedBlockAllocator

      正常分配和管理物理块,没有额外实现prefix caching的功能

关于这两种allocator的具体实现方式,我们将放在源码解读第3篇块管理来做讲解。这里大家只要明白大致定义即可,并不影响我们对调度策略的解读。

  • self.watermark_blocks
    :水位线block数量,它起的是一个预警和缓冲的作用

    ,防止在1次调度中把gpu上预留给KV Cache的显存空间打得过满,出现一些意外风险(毕竟这个预留的显存空间也是我们估计出来的)。
  • NEVER和LATER的区别

    这两者的相同之处在于,都是因为当前显存空间不够,而无法继续调度seq_group
    。区别在于,
    NEVER是因为这条seq实在太长(即prompt太长),长到动用了gpu上所有的block(num_total_gpu_blocks)都无法处理它
    ,所以后续步骤中我们会直接把这个seq标记为完成,不再处理它;而
    LATER是因为之前可能已经调度了很多seq_group,它们占据了相当一部分显存空间,导致gpu上剩余的可用block(num_free_gpu_blocks)无法再处理它
    ,所以我们延迟处理。
4.5 can_append_slot:能否为seq_group分配物理块做decode

回顾4.2调度器的流程图,你会看到我们从running队列中调度seq_group时,我们也会判断是否能为该seq_group分配物理块。
但这时,我们的物理块空间是用来做decode的(给每个seq分配1个token的位置),而不是用来做prefill的(给每个seq分配若干个token的位置),所以这里我们采取的是另一种判断方法
can_append_slot

更具体来说,running队列中seq_group下的n个seqs在上1个推理阶段共生成了n个token。在本次调度中,我们要先为这n个token分配物理块空间,用于存放它们在本次调度中即将产生的KV值。

好,我们再回到这个seq_group的n个seqs上来,我们知道:

  • 当往1个seq的物理块上添加1个token时,可能有两种情况:
    • 之前的物理块满了,所以我新开1个物理块给它
    • 之前的物理块没满,我直接添加在最后一个物理块的空槽位上
    • 所以,对于1个seq来说,最坏的情况就是添加1个物理块;对于n个seqs来说,最坏的情况就是添加n个物理块(想想原理篇中讲过的copy-on-write机制)
  • 对于1个seq_group,除了那些标记为“finish”的seq外,其余seqs要么一起送去推理,要么一起不送去推理。即它们是集体行动的

所以,判断能否对一个正在running的seq_group继续做推理的最保守的方式,就是判断当前可用的物理块数量是否至少为n。

我们直接看代码(一切尽在注释中)

    # vllm/core/block_manager_v1.py
    def can_append_slot(self, seq_group: SequenceGroup) -> bool:
        """
        对于这个seq_group,我们检查对于其中的每一个seq,
        是否能至少分配一个空闲物理块给它
        """
        # Simple heuristic: If there is at least one free block
        # for each sequence, we can append.
        num_free_gpu_blocks = self.gpu_allocator.get_num_free_blocks()
        num_seqs = seq_group.num_seqs(status=SequenceStatus.RUNNING)
        return num_seqs <= num_free_gpu_blocks
4.6 allocate与append_slot:为seq_group分配物理块

当我们判断当前有充足的gpu KV Cache空间给对应的seq_group做新一轮推理时,我们就可以实际给它分配物理块了。这一块的内容涉及的细节太多(不同的prefix caching方式,逻辑块到物理块的映射,物理块释放,物理块的refcount即copy-on-write机制等等),所以我们把这部分留在源码解读3:块管理中来详细说明。

跳过这块并不影响大家对调度器策略的解读。

4.7 preempt:抢占策略

纵观4.2的调度流程,现在我们只剩1个重点没讲了:抢占策略。

其实在2.2介绍SequenceGroup时,我们已经提到了抢占策略的核心逻辑,这里再复制一遍:

在若干个推理阶段后,gpu上的资源不够了,这个seq_group不幸被调度器抢占(preemption)
,它相关的KV block也被swap out到cpu上。此时所有seq的状态变为swapped。这里要注意,
当一个seq_group被抢占时,对它的处理有两种方式:

  • Swap:如果该seq_group剩余生命周期中并行运行的最大seq数量 > 1,此时会采取swap策略
    ,即把seq_group下【所有】seq的KV block从gpu上卸载到cpu上。(seq数量比较多,直接把算出的KV block抛弃,比较可惜)
  • Recomputation:如果该seq_group剩余生命周期中并行运行的最大seq数量 = 1,此时会采取recomputation策略
    ,即把该seq_group相关的物理块都释放掉,然后将它重新放回waiting队列中(
    放在最前面
    )。等下次它被选中推理时,就是从prefill阶段开始重新推理了,因此被称为“重计算”。(seq数量少,重新计算KV block的成本不高)

对“最大生命周期…”这里有疑惑的朋友,回顾下本文2.3(1)。

我们直接来看代码(一切尽在注释中)

    # vllm/core/scheduler.py
    def _preempt(
        self,
        seq_group: SequenceGroup, # 被抢占的seq_group
        blocks_to_swap_out: Dict[int, int],
        preemption_mode: Optional[PreemptionMode] = None,
    ) -> None:
        """
        对被抢占的seq_group进行处理,包括修改其下seq状态,做好gpu到cpu块之间的映射等
        """
        # If preemption mode is not specified, we determine the mode as follows:
        # We use recomputation by default since it incurs lower overhead than
        # swapping. However, when the sequence group has multiple sequences
        # (e.g., beam search), recomputation is not currently supported. In
        # such a case, we use swapping instead.
        # FIXME(woosuk): This makes our scheduling policy a bit bizarre.
        # As swapped sequences are prioritized over waiting sequences,
        # sequence groups with multiple sequences are implicitly prioritized
        # over sequence groups with a single sequence.
        # TODO(woosuk): Support recomputation for sequence groups with multiple
        # sequences. This may require a more sophisticated CUDA kernel.
        
        # 如果没有指定被抢占的类型
        if preemption_mode is None:
            # 如果这个seq_group在剩余生命周期中并行运行的最大seq数为1
            if seq_group.get_max_num_running_seqs() == 1:
                # 就将抢占类型定位“recompute”
                preemption_mode = PreemptionMode.RECOMPUTE
            # 否则定为swap
            else:
                preemption_mode = PreemptionMode.SWAP
        
        # =======================================================================
        # 如果抢占类型是“RECOMPUTE”
        # 则去除该seq对对应物理块的引用,同时将该seq状态改为running,放入waiting队列最前面
        # (详情参见self._preempt_by_recompute)
        # =======================================================================
        if preemption_mode == PreemptionMode.RECOMPUTE:
            self._preempt_by_recompute(seq_group)
        # =======================================================================
        # 如果抢占类型是“SWAP“
        # 详情参见self._preempt_by_swap)
        # =======================================================================
        elif preemption_mode == PreemptionMode.SWAP:
            self._preempt_by_swap(seq_group, blocks_to_swap_out)
        else:
            raise AssertionError("Invalid preemption mode.")

    def _preempt_by_recompute(
        self,
        seq_group: SequenceGroup,
    ) -> None:
        # 获取这个seq_group下正在running的所有seqs,
        # preemption_mode是RECOMPUTE时需要满足正在running的seqs数量为1
        seqs = seq_group.get_seqs(status=SequenceStatus.RUNNING)
        assert len(seqs) == 1
        
        for seq in seqs:
            # 将这条seq的状态从running改成waiting(后续这条seq就要重计算了)
            seq.status = SequenceStatus.WAITING
            # 释放这条seq对应的物理块
            # 即将对应物理块的引用-1,如果此时引用数量为0,说明对应物理块完全自由了,需要再将其放入自由物理块列表中
            self.free_seq(seq)
            # 因为这条seq需要重计算了,所以将其data对象下_num_computed_tokens设置为0
            seq.reset_state_for_recompute()
        
        # NOTE: For FCFS, we insert the preempted sequence group to the front
        # of the waiting queue.
        # 将被抢占,且未来需要重计算的序列,放到waiting队列的最前面
        self.waiting.appendleft(seq_group)

    def _preempt_by_swap(
        self,
        seq_group: SequenceGroup,
        blocks_to_swap_out: Dict[int, int],
    ) -> None:
        # ======================================================================
        # - 释放该seq_group下所有seq的物理块,并为其分配对应的cpu物理块,
        # - 将seq的状态从running改成swapped
        # ======================================================================
        self._swap_out(seq_group, blocks_to_swap_out)
        # ======================================================================
        # 在scheduler的swapped队列中添加该seq_group
        # ======================================================================
        self.swapped.append(seq_group)
  
      def _swap_out(
        self,
        seq_group: SequenceGroup, # 需要被swap到cpu上的seq_group
        blocks_to_swap_out: Dict[int, int],
    ) -> None:
        # ======================================================================
        # 检查是否可以将当前seq_group对应的物理块swap到cpu上
        # 可以的条件:当前seq_group占用的gpu物理块数量 <= cpu上可用的物理块数量
        # ======================================================================
        if not self.block_manager.can_swap_out(seq_group):
            # FIXME(woosuk): Abort the sequence group instead of aborting the
            # entire engine.
            raise RuntimeError(
                "Aborted due to the lack of CPU swap space. Please increase "
                "the swap space to avoid this error.")
        # ======================================================================
        # 释放该seq_group下所有seq的gpu物理块,并为其创建对应的cpu块
        # mapping:{gpu物理块id:cpu物理块id}
        # ======================================================================
        mapping = self.block_manager.swap_out(seq_group)
        blocks_to_swap_out.update(mapping)
        
        # ======================================================================
        # 修改该seq_group下所有seq的状态:从running改成swapped
        # ======================================================================
        for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
            seq.status = SequenceStatus.SWAPPED

额外说明的一点是,一旦你决定执行swap out操作,你就做做好gpu物理块->cpu物理块之间的映射,这样等之后你想swap in时,你才知道去cpu上的哪里把这些物理块找回来。

swap更多的细节也会涉及到blockmanager,所以遗留的细节,我们也放在第三篇中说

4.8 调度器核心代码

有了以上的基础(真是庞大的逻辑),我们现在终于能来看调度器中关于一次调度策略的核心代码了,
大家可以配合4.2流程图阅读
,一切尽在注释中~

    # vllm/core/scheduler.py
    def _schedule(self) -> SchedulerOutputs:
        """
        """
        
        # ==============================================================================
        # blocks_to_swap_in:{cpu物理块id: gpu物理块id}
        # blocks_to_swap_out:{gpu物理块id: cpu物理块id}
        # blocks_to_copy: {旧物理块id:[由旧物理块copy-on-write而来的新物理块id]}
        # ==============================================================================
        blocks_to_swap_in: Dict[int, int] = {}
        blocks_to_swap_out: Dict[int, int] = {}
        blocks_to_copy: Dict[int, List[int]] = {}

        # ==============================================================================
        # Fix the current time.
        # 获取当下时间
        # ==============================================================================
        now = time.time()

        # ==============================================================================
        # Join waiting sequences if possible.
        # 如果swapped队列为空
        # ==============================================================================
        if not self.swapped:
            # ==========================================================================
            # ignored_seq_groups:记录因太长(所需的blocks和总blocks之间的差值超过阈值了),
            # 而无法继续做生成的seq_group,这些seq_group中的seq状态都会被标记为
            # FINISHED_IGNORED,表示直接不处理他们
            # ==========================================================================
            ignored_seq_groups: List[SequenceGroup] = []
            
            # ==========================================================================
            # 记录本次被调度的seq_group
            # ==========================================================================
            scheduled: List[SequenceGroup] = []
            
            # ==========================================================================
            # The total number of sequences on the fly, including the
            # requests in the generation phase.
            # 计算Scheduler running队列中还没有执行完的seq数量
            # ==========================================================================
            num_curr_seqs = sum(seq_group.get_max_num_running_seqs()
                                for seq_group in self.running)
            curr_loras = set(
                seq_group.lora_int_id
                for seq_group in self.running) if self.lora_enabled else None

            # ==========================================================================
            # Optimization: We do not sort the waiting queue since the preempted
            # sequence groups are added to the front and the new sequence groups
            # are added to the back.
            # lora相关的,可以暂时不看
            # ==========================================================================
            leftover_waiting_sequences = deque()
            
            # ==========================================================================
            # 本次调度处理的token总数
            # ==========================================================================
            num_batched_tokens = 0

            # ==========================================================================
            # 开启新一次调度(while循环不结束意味着本次调度不结束,
            # 跳出while循环时意味着本次调度结束了)
            # 开启新一次调度的条件:当waiting队列中有等待处理的请求,且当前时刻可以处理请求
            # ==========================================================================
            while self._passed_delay(now) and self.waiting:
                # =====================================================================
                # 取出waiting队列中的第一个请求,也即最早到达的请求(seq_group)
                # =====================================================================
                seq_group = self.waiting[0]
                
                # =====================================================================
                # 统计该seq_group中s处于waiting的seq的数量
                # =====================================================================
                waiting_seqs = seq_group.get_seqs(
                    status=SequenceStatus.WAITING)
                # =====================================================================
                # 从waiting队列中取出来的seq_group,其seq数量一定是1
                # =====================================================================
                assert len(waiting_seqs) == 1, (
                    "Waiting sequence group should have only one prompt "
                    "sequence.")
                
                # =====================================================================
                # 获取该seq的序列长度(如果该seq_group来自之前被抢占的请求,
                # 那么这个长度不仅包括prompt,
                # 还包括output)
                # =====================================================================                 
                num_prefill_tokens = waiting_seqs[0].get_len()
                
                # =====================================================================
                # 如果从waiting队列中取出的这条seq的长度 > 每次调度能处理的最大序列长度,
                # 那么就打印警告信息,同时把这条seq的状态置为FINISHED_IGNORED,
                # 并将对应seq_group装入ignored_seq_groups中,
                # 然后将其从waiting列表中移除,不再处理
                # =====================================================================
                if num_prefill_tokens > self.prompt_limit:
                    logger.warning(
                        f"Input prompt ({num_prefill_tokens} tokens) is too "
                        f"long and exceeds limit of {self.prompt_limit}")
                    for seq in waiting_seqs:
                        seq.status = SequenceStatus.FINISHED_IGNORED
                    ignored_seq_groups.append(seq_group)
                    self.waiting.popleft()
                    continue
                
                # =====================================================================
                # If the sequence group cannot be allocated, stop.
                # 决定是否能给当前seq_group分配物理块
                # can_allocate返回值可能有三种:
                #       AllocStatus.NEVER:不分配;
                #       AllocStatus.OK:可以分配;
                #       AllocStatus.LATER:延迟分配
                # =====================================================================
                can_allocate = self.block_manager.can_allocate(seq_group)
                # 若是延迟分配,则说明现在没有足够的block空间,所以跳出while循环(不继续对waiting队列中的数据做处理了)
                if can_allocate == AllocStatus.LATER:
                    break
                # 如果不分配,说明seq长得超出了vLLM的处理范围,则后续也不再处理它,直接将该seq状态标记为FINISHED_IGNORED
                elif can_allocate == AllocStatus.NEVER:
                    logger.warning(
                        f"Input prompt ({num_prefill_tokens} tokens) is too "
                        f"long and exceeds the capacity of block_manager")
                    for seq in waiting_seqs:
                        seq.status = SequenceStatus.FINISHED_IGNORED
                    ignored_seq_groups.append(seq_group) # 记录因为太长而无法处理的seq_group
                    self.waiting.popleft() # 将该seq_group从waiting队列中移除
                    continue

                # =====================================================================                 # lora推理相关的部分,可暂时忽略
                # =====================================================================
                lora_int_id = 0
                if self.lora_enabled:
                    lora_int_id = seq_group.lora_int_id
                    if (lora_int_id > 0 and lora_int_id not in curr_loras
                            and len(curr_loras) >= self.lora_config.max_loras):
                        # We don't have a space for another LoRA, so
                        # we ignore this request for now.
                        leftover_waiting_sequences.appendleft(seq_group)
                        self.waiting.popleft()
                        continue

                # =====================================================================
                # If the number of batched tokens exceeds the limit, stop.
                # max_num_batched_tokens:单次调度中最多处理的token数量
                # num_batched_tokens:本次调度中累计处理的token数量
                # 如果后者 > 前者,则结束本次调度
                # =====================================================================
                num_batched_tokens += num_prefill_tokens
                if (num_batched_tokens >
                        self.scheduler_config.max_num_batched_tokens):
                    break

                # =====================================================================
                # The total number of sequences in the RUNNING state should not
                # exceed the maximum number of sequences.
                # num_new_seqs: 当前seq_group中状态为“未执行完”的序列的数量
                # num_curr_seqs:当前调度轮次中,状态为"未执行完“的序列总数
                # 如果超过了我们对单次调度能执行的序列总数的阈值,就结束本次调度
                # =====================================================================
                num_new_seqs = seq_group.get_max_num_running_seqs()
                if (num_curr_seqs + num_new_seqs >
                        self.scheduler_config.max_num_seqs): # 单次迭代中最多处理多少个序列
                    break

                if lora_int_id > 0:
                    curr_loras.add(lora_int_id)
                
                # =====================================================================
                # 走到这一步时,说明当前seq_group已经通过上述种种验证,可以被加入本次调度中执行了
                # 先将其从waiting队列中移出
                # =====================================================================
                self.waiting.popleft()
                
                # =====================================================================
                # 为当前seq_group分配物理块
                # =====================================================================
                self._allocate(seq_group)
                
                # =====================================================================
                # 将当前seq_group放入running队列中
                # =====================================================================
                self.running.append(seq_group)
                
                # =====================================================================
                # 记录本次调度累计处理的序列数量
                # =====================================================================
                num_curr_seqs += num_new_seqs
                
                # =====================================================================
                # 记录本次被调度的seq_group
                # =====================================================================
                scheduled.append(
                    ScheduledSequenceGroup(
                        seq_group=seq_group,
                        token_chunk_size=num_prefill_tokens))
            
            # =====================================================================
            # 和lora相关的操作,暂时忽略
            # =====================================================================
            self.waiting.extendleft(leftover_waiting_sequences)

            # =====================================================================
            # 如果本次有被调度的seq_group(scheduled非空)
            # 或者本次有被设置为不再处理的seq_group(ignored_seq_groups非空)
            # 就将其包装成SchedulerOutputs对象
            # =====================================================================
            if scheduled or ignored_seq_groups:
                self.prev_prompt = True
                scheduler_outputs = SchedulerOutputs(
                    scheduled_seq_groups=scheduled,
                    prompt_run=True,
                    num_batched_tokens=num_batched_tokens,
                    blocks_to_swap_in=blocks_to_swap_in,
                    blocks_to_swap_out=blocks_to_swap_out,
                    blocks_to_copy=blocks_to_copy,
                    ignored_seq_groups=ignored_seq_groups,
                )
                return scheduler_outputs

        # ==============================================================================
        # NOTE(woosuk): Preemption happens only when there is no available slot
        # to keep all the sequence groups in the RUNNING state.
        # In this case, the policy is responsible for deciding which sequence
        # groups to preempt.
        # 如果swap队列非空,且本次没有新的需要被发起推理的seq_group,
        # 则对running队列中的seq_group,
        # 按照 "当前时间-该seq_group到达时间" ,从早到晚排列running队列中的seq_group
        # ==============================================================================
        self.running = self.policy.sort_by_priority(now, self.running)

        # ==============================================================================
        # Reserve new token slots for the running sequence groups.
        # 初始化一个新的running队列(deque())
        # 初始化一个抢占列表
        # ==============================================================================
        running: Deque[SequenceGroup] = deque()
        preempted: List[SequenceGroup] = []
        
        # ==============================================================================
        # 当running队列非空时
        # ==============================================================================
        while self.running:
            # 取出running队列中最早到来的seq_group
            seq_group = self.running.popleft()
            # =====================================================================
            # 对于running队列中这个最早到来的seq_group,检查对于其中的每一个seq,
            # 是否能至少分配一个物理块给它,如果不能的话
            # (说明要执行抢占操作了,否则马上会没有资源让这个最早到达的seq_group做完推理):
            # (注意,这里用了while...else,如果while条件正常结束,则进入else内容;
            #  如果被break,则不会执行else)
            # =====================================================================
            while not self.block_manager.can_append_slot(seq_group):
                # =====================================================================
                # 如果从running队列中取出最早达到的seq_group后,running队列还是非空
                # =====================================================================
                if self.running:
                    # ==============================================================
                    # 抢占running队列中最晚到来的seq_group(可怜的被害者)
                    # ==============================================================
                    victim_seq_group = self.running.pop()
                    
                    # ==============================================================
                    # 一个seq_group被抢占后,有2中处理方式:
                    # - 如果该seq_group下只有一个seq,执行【重计算】,
                    #   将其从running队列中移除,并清空它的物理块,
                    #   将其seq的状态从running->waiting,并加入waiting队列。后面将重新计算
                    #
                    # - 如果该seq_group下有多个seq,执行【swap】,
                    #   清空它的gpu物理块,并为这些物理块做好cpu物理块映射,
                    #   这些seq的block_table字典中({seq_id: block_table})的block_table
                    #   从gpu物理块改成cpu物理块
                    #   将其seqs状态从running -> swapped,加入swapped队列
                    # ==============================================================
                    self._preempt(victim_seq_group, blocks_to_swap_out)
                    preempted.append(victim_seq_group)
                # ==============================================================
                # 如果除这个最早到来的seq_group外,running队列中再没有别的seq_group了,
                # 且此时又没有足够的空间留给这个最早来的seq_group做推理了,那么只能抢占它
                # ==============================================================
                else:
                    # 那就只能抢占这个最早到达的seq_group了
                    # No other sequence groups can be preempted.
                    # Preempt the current sequence group.
                    self._preempt(seq_group, blocks_to_swap_out)
                    preempted.append(seq_group)
                    break
            # ==============================================================
            # 如果此时有足够的空间给running队列中最早来的seq_group做推理了
            # ==============================================================
            else:
                # ==============================================================
                #  Append new slots to the sequence group.
                # seq_group里的每个seq正常做推理。假设现在每个seq正常生成一个token,我们需要根据每个seq当前
                # 维护的最后一个物理块的情况,决定是否需要分配新的物理块,决定的结果可能如下:
                # - 物理块refcount = 1,且有充足槽位,则无需分配新物理块
                # - 物理块refcount = 1,且无充足槽位,分配新的物理块
                # - 物理块refcount > 1, 采用copy-on-write机制,分配新物理块,对该seq,
                #                      用新物理块替换掉其block_table中维护的最后一个物理块
                #                     (称为旧物理块)。释放旧物理块(令其refcount-1)。
                #                      同时记录下新旧物理块之间的映射,
                #   blocks_to_copy:{旧物理块id:[由旧物理块copy-on-write而来的新物理块id]}
                # ==============================================================
                self._append_slot(seq_group, blocks_to_copy)
                
                # ==============================================================
                # 自定义的running队列中添加这个seq_group
                # ==============================================================
                running.append(seq_group)
        
        # ==============================================================================
        # 最终还能在running队列中运行的seq_group
        # ==============================================================================
        self.running = running

        # ==============================================================================
        # Swap in the sequence groups in the SWAPPED state if possible.
        # 对于swapped队列中的seq_group,按照到达时间从早到晚排序
        # ==============================================================================
        self.swapped = self.policy.sort_by_priority(now, self.swapped)
        
        # ==============================================================================
        # 如果本次调度没有新安排的被抢占的seq_group(即preempted为空)
        # ==============================================================================
        if not preempted:
            # ==============================================================
            # 计算running队列中,所有seq_group下,“到生命周期结束为止最多运行的seq数量”的总和
            # ==============================================================
            num_curr_seqs = sum(seq_group.get_max_num_running_seqs()
                                for seq_group in self.running)
            # ==============================================================
            # lora部分,暂时忽略
            # ==============================================================
            curr_loras = set(
                seq_group.lora_int_id
                for seq_group in self.running) if self.lora_enabled else None

            # ==============================================================
            # lora相关的,可以暂时不看
            # ==============================================================
            leftover_swapped = deque()

            # ==============================================================
            # 当swapped队列非空时
            # ==============================================================
            while self.swapped:
                # ==============================================================
                # 取出swap队列中最早被抢占的seq_group
                # ==============================================================
                seq_group = self.swapped[0]
                # ==============================================================
                # lora相关,暂时不看
                # ==============================================================
                lora_int_id = 0
                if self.lora_enabled:
                    lora_int_id = seq_group.lora_int_id
                    if (lora_int_id > 0 and lora_int_id not in curr_loras
                            and len(curr_loras) >= self.lora_config.max_loras):
                        # We don't have a space for another LoRA, so
                        # we ignore this request for now.
                        leftover_swapped.appendleft(seq_group)
                        self.swapped.popleft()
                        continue

                # ==============================================================
                # If the sequence group cannot be swapped in, stop.
                # 判断一个被swap的seq_group现在是否能重新running起来
                # 【判断条件】:
                # 当前gpu上可用的物理块数量 - 重新跑起这个seq_group需要的物理块数量 
                # >= 水位线物理块数量
                # 其中:
                # 后者 = 在被swap之前它已经使用的物理块数量(去重过了) 
                #       + 若能再次跑起来它至少需要的物理块数量
                #(假设每个seq至少需要1个物理块)
                # ==============================================================
                # 如果不能,则意味着当前没有充足资源处理swap队列中的seq_group,则直接跳出循环
                if not self.block_manager.can_swap_in(seq_group):
                    break

                # ==============================================================
                # The total number of sequences in the RUNNING state should not
                # exceed the maximum number of sequences.
                # 如果对于swap队列中的这个seq_group,当前gpu上有充足资源可以让它重新跑起来的话:
                # ==============================================================
                # 取出这个seq_group在剩余生命周期内将并行运行的最大序列数
                num_new_seqs = seq_group.get_max_num_running_seqs()
                # 如果已超过一次调度中能处理的最大序列数,则不再对该seq_group进行处理
                if (num_curr_seqs + num_new_seqs >
                        self.scheduler_config.max_num_seqs):
                    break
                
                # lora部分暂时不看
                if lora_int_id > 0:
                    curr_loras.add(lora_int_id)
                
                # ==============================================================
                # 走到这一步,说明可以对swapped队列中的这个seq_group做相关处理了,
                # 先把它从队列中移出去
                # ==============================================================
                self.swapped.popleft()
                
                # ==============================================================
                # 将该seq_group下所有cpu块置换回gpu块,
                # 并将其下每个seq的状态从swapped改成running
                # ==============================================================
                self._swap_in(seq_group, blocks_to_swap_in)
                
                # ==============================================================
                # 假设其正常做推理了,假设现在生成了一个token,要如何分配物理块(参见上面注释)
                # ==============================================================
                self._append_slot(seq_group, blocks_to_copy)
                num_curr_seqs += num_new_seqs
                self.running.append(seq_group)

            self.swapped.extendleft(leftover_swapped)

        # ==============================================================================
        # 如果本次调度有新安排的被抢占的seq_group(即preempted不为空),那就准备将最终的running队列
        # 作为scheduleroutputs返回
        # ==============================================================================
        
        # Each sequence in the generation phase only takes one token slot.
        # Therefore, the number of batched tokens is equal to the number of
        # sequences in the RUNNING state.
        # 由于每个seq一次只生成1个token,因此num_batched_tokens = 状态为running的seq数量
        num_batched_tokens = sum(
            seq_group.num_seqs(status=SequenceStatus.RUNNING)
            for seq_group in self.running)

        # ==============================================================================
        # 构建Schduleroutputs
        # ==============================================================================
        scheduler_outputs = SchedulerOutputs(
            scheduled_seq_groups=[
                ScheduledSequenceGroup(seq_group=running_group,
                                       token_chunk_size=1)
                for running_group in self.running
            ],
            prompt_run=False,
            num_batched_tokens=num_batched_tokens,
            blocks_to_swap_in=blocks_to_swap_in,
            blocks_to_swap_out=blocks_to_swap_out,
            blocks_to_copy=blocks_to_copy,
            ignored_seq_groups=[],
        )
        return scheduler_outputs

五、总结

在本文中,我们:

  • 从vLLM批处理的入口函数开始,介绍了其推理内核LLMEngine的两个重要函数
    add_request()

    step()
  • 在LLMEngine开始处理请求前(实例化阶段),它会先做一次模拟实验,来估计gpu上需要预留多少显存给KV Cache block。
  • 当LLMEngine开始处理请求时(add_request),它会把每个prompt当成一个请求,同时把它包装成一个SequenceGroup对象。
  • 当LLMEngine开始执行1次调度时(step),调度器策略(Scheduler)会根据实际gpu上KV Cache block的使用情况等要素,来选择要送哪些seq_group去做新一轮推理。注意,在1次推理中,所有seq_group要么一起做prefill,要么一起做decode。

到目前为止,
我们遗留了以下问题

  • vLLM的物理块管理(block manager)的细节
    ,包括物理块结构,逻辑块-物理块映射,物理块新增与释放,prefix caching等等
  • step()其余步骤
    :调度器只是决定了要送哪些seq_group去做推理,但是“每1个推理阶段结束后,如何根据output更新seq_group,将其送入下一次调度”这块不是调度器的职责,也是本文没涉及到的。

我们将在本系列后续的文章中,对块管理做详细讲解。在这之后,我们会分别以parallel sampling和beam search这两种decode方式为例,把整个流程传一遍,一起来更好理解vLLM背后的运作逻辑。

编辑于 2024-04-15 13:19・IP 属地北京

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1885376.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[python][Anaconda]使用jupyter打开F盘或其他盘文件

jupyter有一个非常不好的体验&#xff0c;就是不能在界面切换到其他盘来打开文件。 使用它&#xff0c;比较死板的操作是要先进入文件目录&#xff0c;再运行jupyter。 以Windows的Anaconda安装了jupyter lab或jupyter notebook为例。 1&#xff0c;先运行Anaconda Prompt 2&…

儿童房间灯哪个牌子的好?几款儿童房间灯具品牌分享

对于视力正处于发育阶段的儿童而言&#xff0c;台灯已不仅仅是一个简单的照明工具。它不仅驱散夜幕下的阴霾&#xff0c;还能为儿童的眼部保驾护航。一款优质的护眼台灯更是不可或缺的守护者。然而&#xff0c;面对市场上琳琅满目的选择&#xff0c;怎样选出一款合适的护眼台灯…

​Stable Diffusion史上最全插件,已打包整理,12个常用插件你肯定用得上!

还在于有丰富的第三方插件&#xff0c;即我们在安装部署之后安装汉化插件的界面 插件安装方式可以是“可下载->加载扩展列表”&#xff0c;然后从列表选择或搜索插件下载&#xff0c;或直接选择“从网站安装”&#xff0c;填写插件的git仓库地址。一般我们从扩展列表搜索即可…

【Python】已解决:pymssql._pymssql.OperationalError 关于关键字‘distinct’的语法错误

文章目录 一、分析问题背景二、可能出错的原因三、错误代码示例四、正确代码示例五、注意事项 已解决&#xff1a;pymssql._pymssql.OperationalError 关于关键字‘distinct’的语法错误 一、分析问题背景 在使用pymssql库与SQL Server数据库进行交互时&#xff0c;有时会遇到…

WPF在.NET9中的重大更新:Windows 11 主题

在2023年的2月20日&#xff0c;在WPF的讨论区&#xff0c;WPF团队对路线的优先级发起了一次讨论。 对三个事项发起了投票。 第一个是Windows 11 主题 第二个是更新的控件 第三个是可空性注释 最终Windows 11 主题得票最高&#xff0c;WPF团队2023-2024的工作优先级就是Windows…

UE4_材质_水体的反射与折射制作_Ben教程

在这个教程中&#xff0c;将制作水的反射和折射&#xff0c;上个教程&#xff0c;我们主要讲了制作水涟漪&#xff08;水面波纹&#xff09;和水滴法线混合&#xff0c;水深计算&#xff0c;我们首先要谈的是反射和产生折射的问题。我们将所有从干扰从场景中分离出去&#xff0…

微信小程序 canvas 处理图片的缩放移动旋转问题

这里使用到了一个插件&#xff0c;canvas-drag&#xff0c;来实现大部分功能的 上效果 直接上代码吧~ wxml <div class"container"><canvas-drag id"canvas-drag" graph"{{graph}}" width"700" height"750" ena…

页面加载503 Service Temporarily Unavailable异常

最近发现网页刷新经常503&#xff0c;加载卡主&#xff0c;刷新页面就正常了。 研究之后发现是页面需要的js文件等加载失败了。 再研究之后发现是nginx配置的问题。 我之前为了解决一个漏洞检测到目标主机可能存在缓慢的HTTP拒绝服务攻击 把nginx的连接设置了很多限制&#…

JSONpath语法怎么用?

JSONPath 可以看作定位目标对象位置的语言&#xff0c;适用于 JSON 文档。 JSONPath 与 JSON 的 关系相当于 XPath 与 XML 的关系&#xff0c; JSONPath 参照 XPath 的路径表达式&#xff0c;提供了描述 JSON 文档层次结构的表达式&#xff0c;通过表达式对目标…

点云处理实操 点云平面拟合

目录 一、什么是平拟合 二、拟合步骤 三、数学原理 1、平面拟合 2、PCA过程 四、代码 一、什么是平拟合 平面拟合是指在三维空间中找到一个平面,使其尽可能接近给定的点云。最小二乘法是一种常用的拟合方法,通过最小化误差平方和来找到最优的拟合平面。 二、拟合步骤…

【Python】已解决:ERROR: No matching distribution found for JPype

文章目录 一、分析问题背景二、可能出错的原因三、错误代码示例四、正确代码示例五、注意事项 已解决&#xff1a;ERROR: No matching distribution found for JPype 一、分析问题背景 在Python开发中&#xff0c;有时我们需要使用Java库来扩展功能或实现某些特定任务。JPype…

有手就行,轻松本地部署 Llama、Qwen 大模型,无需 GPU

用 CPU 也能部署私有化大模型&#xff1f; 对&#xff0c;没错&#xff0c;只要你的电脑有个 8G 内存&#xff0c;你就可以轻松部署 Llama、Gemma、Qwen 等多种开源大模型。 非技术人员&#xff0c;安装 Docker、Docker-compose 很费劲&#xff1f; 不用&#xff0c;这些都不…

方法重载与重写的区别

1.方法重载和重写都是实现多态的方式&#xff0c;区别在于重载是编译时多态&#xff0c;重写是运行时多态。 2.重载是在同一个类中&#xff0c;两个方法的方法名相同&#xff0c;参数列表不同&#xff08;参数类型、顺序、个数&#xff09;&#xff0c;与方法返回值无关&#x…

springboot种草好物app-计算机毕业设计源码13151

摘要 随着电子商务的快速发展和智能手机的普及&#xff0c;越来越多的用户选择通过移动应用程序进行商品浏览、购买和分享体验。种草好物App作为一个专注于商品推荐和购物体验的平台&#xff0c;具有广泛的应用前景和商业价值。本研究旨在构建一个功能丰富、性能稳定的种草好物…

(vue)el-tabs选中最后一项后更新数据后无法展开

(vue)el-tabs选中最后一项后更新数据后无法展开 效果&#xff1a; 原因&#xff1a;选中时绑定的值在数据更新后找不到 思路&#xff1a;更新数据时把选中的v-model的属性赋为初始值 写法&#xff1a; <el-form-item label"字段选择"><el-tabsv-model&qu…

【计算机网络】传输层(作业)

1、OSI参考模型中&#xff0c;提供端到端的透明数据传输服务、差错控制和流量控制的层是&#xff08;C&#xff09;。 A. 物理层B. 网络层C. 运输层D. 会话层 2、运输层为&#xff08;B&#xff09;之间提供逻辑通信。 A. 主机B. 进程C. 路由器D. 操作系统 3、运输层面向连接…

【面试系列】技术支持工程师高频面试题及详细解答

欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;欢迎订阅相关专栏&#xff1a; ⭐️ 全网最全IT互联网公司面试宝典&#xff1a;收集整理全网各大IT互联网公司技术、项目、HR面试真题. ⭐️ AIGC时代的创新与未来&#xff1a;详细讲解AIGC的概念、核心技术、…

JavaScript实现时钟计时

会动的时钟 1.目标 2.分析 1.最开始页面不显示时间&#xff0c;有两个按钮 开始 暂停。开始按钮是可以点击的&#xff0c;暂停按钮不能点击 2.当点击开始按钮后&#xff0c;设置开始按钮不可用&#xff0c;暂停按钮可用。然后将当前系统时间放到按钮上面。每隔1秒中更新一下…

国产操作系统麒麟v10、UOS在线打开excel文件并动态赋值

在实际的开发过程中&#xff0c;经常会遇到数据库中的数据填充到excel生成一份正式文件的功能&#xff0c;PageOffice客户端控件支持在线预览Excel文件时&#xff0c;通过Workbook对象来实现对Excel文件的数据填充功能&#xff0c;如果只是简单的填充一下数据&#xff0c;那么通…

通过容器启动QAnything知识库问答系统

QAnything (Question and Answer based on Anything) 是致力于支持任意格式文件或数据库的本地知识库问答系统&#xff0c;可断网安装使用。目前已支持格式&#xff1a;PDF(pdf)&#xff0c;Word(docx)&#xff0c;PPT(pptx)&#xff0c;XLS(xlsx)&#xff0c;Markdown(md)&…