【JVM面试题】总结-01

news2024/11/23 23:18:53

【JVM面试题】总结-01

  • 1. 介绍下Java内存区域(运行时数据区)
    • 1.1 程序计数器(线程私有)
    • 1.2 虚拟机栈(线程私有)
    • 1.3 本地方法栈(线程私有)
    • 1.4 Java堆(线程共享)
    • 1.5 方法区(线程共享)
      • 1.5.1 方法区和永久代的关系
      • 1.5.2 常用参数
      • 1.5.3 为什么要将永久代 (方法区) 替换为元空间 (MetaSpace) 呢?
    • 1.6 运行时常量池
    • 1.7 直接内存
  • 2. 对象的创建
    • Step1:类加载检查
    • Step2:分配内存
    • Step3:初始化零值
    • Step4:设置对象头
    • Step5:执行 init 方法
  • 3. 对象的内存布局

1. 介绍下Java内存区域(运行时数据区)

Java 虚拟机在执行 Java 程序的过程中会把它管理的内存划分成若干个不同的数据区域。
JDK 1.8 和之前的版本略有不同。

线程私有的:

  • 程序计数器
  • 虚拟机栈
  • 本地方法栈

线程共享的:

  • 方法区
  • 直接内存(非运行时数据区的一部分)

1.1 程序计数器(线程私有)

是一块较小的内存空间,可以看作是当前线程所执行的字节码的行号指示器。字节码解释器工作时通过改变这个计数器的值来选取下一条需要执行的字节码指令,分支、循环、跳转、异常处理、线程恢复等功能都需要依赖这个计数器来完成。

另外,为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,各线程之间计数器互不影响,独立存储,我们称这类内存区域为”线程私有”的内存。

从上面的介绍中我们知道程序计数器主要有两个作用:

  1. 字节码解释器通过改变程序计数器来依次读取指令,从而实现代码的流程控制, 如:顺序执行、选择、循环、异常处理。

  2. 在多线程的情况下,程序计数器用于记录当前线程执行的位置,从而当线程被切换回来的时候能够知道该线程上次运行到哪儿了。

注意:程序计数器是唯一一个不会出现 OutofMemoryError 的内存区域,它的生命周期随着线程的创建而创建,随着线程的结束而死亡。

1.2 虚拟机栈(线程私有)

与程序计数器一样,Java虚拟机栈也是线程私有的,它的生命周期和线程相同,虚拟机栈描述的是 Java 方法执行的内存模型,每次方法调用的数据都是通过栈传递的。虚拟机会创建一个栈帧用于存储局部变量表、操作数栈、动态连接、方法出口等信息。每一个方法被调用直至执行完毕的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。

Java 虚拟机栈也是线程私有的,每个线程都有各自的 Java 虚拟机栈,而且随着线程的创建而创建,随着线程的死亡而死亡。

Java 内存可以粗糙的区分为堆内存(Heap) 和栈内存(Stack),其中栈就是现在说的虚拟机栈,或者说是虚拟机栈中局部变量表部分。(实际上,Java虚拟机栈是由一个个栈帧组成,而每个栈帧中都拥有:局部变量表、操作数栈、动态链接、方法出口信息。)

局部变量表主要存放了编译期可知的各种数据类型 (boolean、 byte、 char、 short、 int。 float。 long、 double)、对象引用(reference 类型,它不同于对象本身,可能是一个指向对象起始地址的引用指针,也可能是指向一个代表对象的句柄或其他与此对象相关的位置)。

Java 虛拟机栈会出现两种错误: StackOverFlowError 和 OutOfMemoryError 。

  • StackOverFlowError : 若 Java 虚拟机栈的内存大小不允许动态扩展,那么当线程请求栈的深度超过当前 Java 虚拟机栈的最大深度的时候,就抛出StackOverFlowError 错误
  • OutOfMemoryError : Java 虚拟机栈的内存大小可以动态扩展, 如果虚拟机在动态扩展栈时无法申请到足够的内存空间,则抛出 OutOfMemoryError 异常。

1.3 本地方法栈(线程私有)

本地方法栈和虚拟机栈所发挥的作用非常相似,区别是: 虚拟机栈为虚拟机执行 Java 方法 (也就是字节码)服务,而本地方法栈则为虚拟机使用到的 Native 方法服务。 在 HotSpot 虚拟机直接就把本地方法栈和虚拟机栈合二为一。与虚拟机栈一样,本地方法栈也会在栈深度溢出或者栈扩展失败时分别抛出StackOverflowErrorOutOfMemoryError异常。

在Java编程中,Native方法(本地方法)是用非Java语言(通常是C或C++)编写的方法,可以通过Java调用。这种方法的实现依赖于特定的平台或操作系统。Native方法的主要作用是提供Java无法实现的功能或提高性能。Native方法通常使用Java Native Interface (JNI) 来与Java代码进行交互。

1.4 Java堆(线程共享)

Java堆(Java Heap)是Java 虚拟机所管理的内存中最大的一块,Java 堆是所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例以及数组都在这里分配内存。

Java 世界中”几乎”所有的对象都在堆中分配,但是,随着JIT编译器的发展与逃逸分析技术逐渐成熟,栈上分配、标量替换优化技术将会导致一些微妙的变化,所有的对象都分配到堆上也渐渐变得不那么”绝对”了。从 JDK 1.7 开始已经默认开启逃逸分析,如果某些方法中的对象引用没有被返回或者未被外面使用(也就是未逃逸出去),那么对象可以直接在栈上分配内存。

Java 堆是垃圾收集器管理的主要区域,因此也被称作GC 堆(Garbage Collected Heap)。从垃圾回收的角度,由于现在收集器基本都采用分代垃圾收集算法,所以 Java 堆还可以细分为:新生代和老年代;再细致一点有:Eden 空间、From Survivor、 To Survivor 空间等。进一步划分的目的是更好地回收内存,或者更快地分配内存。

在 JDK 7 版本及 JDK 7 版本之前,堆内存被通常分为下面三部分:

  1. 新生代内存(Young Generation)
  2. 老生代(Old Generation)
  3. 永生代(Permanent Generation)

JDK 8 版本之后方法区(HotSpot 的永久代)被彻底移除了(JDK1.7 就已经开始了),取而代之是元空间,元空间使用的是直接内存。

上图所示的 Eden 区、两个 Survivor 区都属于新生代(为了区分,这两个 Survivor 区域按照顺序被命名为 from 和 to),中间一层属于老年代。


Java堆既可以被实现成固定大小的,也可以是可扩展的,不过当前主流的Java虚拟机都是按照可扩展来实现的(通过参数-Xmx和-Xms设定)。如果在Java堆中没有内存完成实例分配,并且堆也无法再扩展时,Java虚拟机将会抛出OutOfMemoryError异常。


导致OutOfMemoryError 错误主要包含如下:

  1. java.lang.OutOfMemoryError: GC Overhead Limit Exceeded : 当 JVM 花太多时间执行垃圾回收并且只能回收很少的堆空间时,就会发生此错误。
  2. java.lang.OutOfMemoryError: Java heap space :假如在创建新的对象时, 堆内存中的空间不足以存放新创建的对象, 就会引发此错误。(和配置的最大堆内存有关,且受制于物理内存大小。最大堆内存可通过 -Xmx 参数配置,若没有特别配置,将会使用默认值,详见:Default Java 8 max heap size)

1.5 方法区(线程共享)

方法区与 Java 堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。虽然 Java 虚拟机规范把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫做 Non-Heap(非堆),目的应该是与 Java 堆区分开来。

方法区也被称为永久代。很多人都会分不清方法区和永久代的关系,为此我也查阅了文献。

1.5.1 方法区和永久代的关系

《Java 虚拟机规范》只是规定了有方法区这么个概念和它的作用,并没有规定如何去实现它。那么,在不同的 JVM 上方法区的实现肯定是不同的了。 方法区和永久代的关系很像 Java 中接口和类的关系,类实现了接口,而永久代就是 HotSpot 虚拟机对虚拟机规范中方法区的一种实现方式。 也就是说,永久代是 HotSpot 的概念,方法区是 Java 虚拟机规范中的定义,是一种规范,而永久代是一种实现,一个
是标准一个是实现,其他的虚拟机实现并没有永久代这一说法。

1.5.2 常用参数

JDK 1.8 之前永久代还没被彻底移除的时候通常通过下面这些参数来调节方法区大小

-XX:PermSize=N //方法区 (永久代) 初始大小
-XX:MaxPermSize=N //方法区 (永久代) 最大大小,超过这个值将会抛出 OutOfMemoryError

相对而言,垃圾收集行为在这个区域是比较少出现的,但并非数据进入方法区后就“永久存在”了。
JDK 1.8 的时候,方法区(HotSpot 的永久代)被彻底移除了(JDK1.7 就已经开始了),取而代之是元空间,元空间使用的是直接内存。
下面是一些常用参数:

-XX:MetaspaceSize=N //设置 Metaspace 的初始(和最小大小)
-XX:MaxMetaspaceSize=N //设置 Metaspace 的最大大小

比如配置
-XX:MetaspaceSize=256m 
-XX:MaxMetaspaceSize=512m

与永久代很大的不同就是,如果不指定大小的话,随着更多类的创建,虚拟机会耗尽所有可用的系统内存。

1.5.3 为什么要将永久代 (方法区) 替换为元空间 (MetaSpace) 呢?

题目说的永久代其实是方法区,在JDK 8以前,许多Java程序员都习惯在HotSpot虚拟机上开发、部署程序,很多人都更愿意把方法区称呼为“永久代”。

下图来自《深入理解 Java 虚拟机》第 3 版 2.2.5
在这里插入图片描述

  1. 整个永久代有一个 JVM 本身设置的固定大小上限,无法进行调整,而元空间使用的是直接内存,受本机可用内存的限制,虽然元空间仍旧可能溢出,但是比原来出现的几率会更小。
    你可以使用 -XX:MaxMetaspaceSize 标志设置最大元空间大小,默认值为 unlimited,这意味着它只受系统内存的限制。 -XX:MetaspaceSize 调整标志定义元空间的初始大小如果未指定此标志,则 Metaspace 将根据运行时的应用程序需求动态地重新调整大小。
  2. 元空间里面存放的是类的元数据,这样加载多少类的元数据就不由 MaxPermSize 控制了, 而由系统的实际可用空间来控制,这样能加载的类就更多了。
  3. 在 JDK8,合并 HotSpot 和 JRockit 的代码时, JRockit 从来没有一个叫永久代的东西,合并之后就没有必要额外的设置这么一个永久代的地方了。

1.6 运行时常量池

运行时常量池是方法区的一部分。Class 文件中除了有类的版本、字段、方法、接口等描述信息外,还有常量池表(用于存放编译期生成的各种字面量和符号引用)

既然运行时常量池是方法区的一部分,自然受到方法区内存的限制,当常量池无法再申请到内存时会抛出 OutOfMemoryError 错误。

1.7 直接内存

直接内存并不是虚拟机运行时数据区的一部分,也不是虚拟机规范中定义的内存区域,但是这部分内存也被频繁地使用。而且也可能导致 OutOfMemoryError 错误出现。

JDK1.4 中新加入的 NIO(New Input/Output) 类,引入了一种基于通道(Channel)与缓存区(Buffer)的 I/O 方式,它可以直接使用 Native 函数库直接分配堆外内存,然后通过一个存储在 Java 堆中的 DirectByteBuffer 对象作为这块内存的引用进行操作。这样就能在一些场景中显著提高性能,因为避免了在 Java 堆和 Native 堆之间来回复制数据。

2. 对象的创建

在这里插入图片描述

Step1:类加载检查

虚拟机遇到一条 new 指令时,首先将去检查这个指令的参数是否能在常量池中定位到这个类的符号引用,并且检查这个符号引用代表的类是否已被加载过、解析和初始化过。如果没有,那必须先执行相应的类加载过程。

Step2:分配内存

在类加载检查通过后, 接下来虚拟机将为新生对象分配内存对象所需的内存大小在类加载完成后便可确定,为对象分配空间的任务等同于把一块确定大小的内存从 Java 堆中划分出来。分配方式有 “指针碰撞”“空闲列表” 两种,选择哪种分配方式由Java堆是否规整决定,而Java堆是否规整又由所采用的垃圾收集器是否带有空间压缩整理(Compact)的能力决定。因此,当使用Serial、ParNew等带压缩整理过程的收集器时,系统采用的分配算法是指针碰撞,既简单又高效;而当使用CMS这种基于清除(Sweep)算法的收集器时,理论上就只能采用较为复杂的空闲列表来分配内存。

指针碰撞:假设Java堆中内存是绝对规整的,所有被使用过的内存都被放在一边,空闲的内存被放在另一边,中间放着一个指针作为分界点的指示器,那所分配内存就仅仅是把那个指针向空闲空间方向挪动一段与对象大小相等的距离,这种分配方式称为“指针碰撞”(Bump The Pointer)。

空闲列表:但如果Java堆中的内存并不是规整的,已被使用的内存和空闲的内存相互交错在一起,那就没有办法简单地进行指针碰撞了,虚拟机就必须维护一个列表,记录上哪些内存块是可用的,在分配的时候从列表中找到一块足够大的空间划分给对象实例,并更新列表上的记录,这种分配方式称
为“空闲列表”(Free List)。

选择以上两种方式中的哪一种,取决于 Java 堆内存是否规整。而 Java 堆内存是否规整,取决于 GC 收集器的算法是"标记-清除",还是"标记-整理"(也称作"标记-压缩"),值得注意的是,复制算法内存也是规整的。

在这里插入图片描述

内存分配并发问题(补充内容,需要掌握)

在创建对象的时候有一个很重要的问题,就是线程安全,因为在实际开发过程中,创建对象是很频繁的事情,作为虚拟机来说,必须要保证线程是安全的,通常来讲,虚拟机采用两种方式来保证线程安全:

  • CAS+失败重试: CAS 是乐观锁的一种实现方式。所谓乐观锁就是,每次不加锁而是假设没有冲突而去完成某项操作,如果因为冲突失败就重试,直到成功为止。虚拟机采用 CAS 配上失败重试的方式保证更新操作的原子性。

  • TLAB: 把内存分配的动作按照线程划分在不同的空间之中进行,即每个线程在Java堆中预先分配一小块内存,称为本地线程分配缓冲(Thread Local AllocationBuffer,TLAB),哪个线程要分配内存,就在哪个线程的本地缓冲区中分配,只有本地缓冲区用完了,分配新的缓存区时才需要同步锁定。虚拟机是否使用TLAB。

Step3:初始化零值

内存分配完成后,虚拟机需要将分配到的内存空间都初始化为零值(不包括对象头),这一步操作保证了对象的实例字段在 Java 代码中可以不赋初始值就直接使用,程序能访问到这些字段的数据类型所对应的零值。

Step4:设置对象头

初始化零值完成之后,虚拟机要对对象进行必要的设置, 例如这个对象是哪个类的实例、如何才能找到类的元数据信息、对象的哈希码、对象的 GC 分代年龄等信息。 这些信息存放在对象头中。 另外,根据虚拟机当前运行状态的不同,如是否启用偏向锁等,对象头会有不同的设置方式。

Step5:执行 init 方法

在上面工作都完成之后,从虚拟机的视角来看,一个新的对象已经产生了,但从 Java 程序的视角来看,对象创建才刚开始,<init> 方法还没有执行,所有的字段都还为零。所以一般来说,执行 new 指令之后会接着执行<init>方法,把对象按照程序员的意愿进行初始化,这样一个真正可用的对象才算完全产生出来。

3. 对象的内存布局

在 Hotspot 虚拟机中,对象在内存中的布局可以分为 3 块区域:对象头、实例数据和对齐填充。

Hotspot 虚拟机的对象头包括两部分信息,第一部分用于存储对象自身的运行时数据(哈希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程ID、偏向时间戳等),另一部分是类型指针,即对象指向它的类元数据的指针,虚拟机通过这个指针来确定这个对象是那个类的实例。

实例数据部分是对象真正存储的有效信息,也是在程序中所定义的各种类型的字段内容。

对齐填充部分不是必然存在的,也没有什么特别的含义,仅仅起占位作用。 因为Hotspot 虚拟机的自动内存管理系统要求对象起始地址必须是 8 字节的整数倍,换句话说就是对象的大小必须是 8 字节的整数倍。而对象头部分正好是 8 字节的倍数(1 倍或2 倍),因此,当对象实例数据部分没有对齐时,就需要通过对齐填充来补全。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1883821.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

WCCI 2024开幕,横滨圣地巡礼,畅游动漫与美食的世界

惊喜&#xff01;WCCI 2024开幕&#xff0c;横滨圣地巡礼&#xff01;畅游动漫与美食的世界 会议之眼 快讯 会议介绍 IEEE WCCI&#xff08;World Congress on Computational Intelligence&#xff09;2024&#xff0c;即2024年IEEE世界计算智能大会&#xff0c;于6月30日至…

写代码,为什么还需要作图?

引言 古人云 &#xff1a;一图胜千言&#xff0c;闲人说&#xff1a;无图无真相。 在日常的聊天工具当中&#xff0c;无论是使用微信&#xff0c;还是钉钉。使用图片或表情包的频次越来越高&#xff0c;那是为什么呢&#xff1f;其实在互联网没有那么发达的时候&#xff0c;我…

Adobe Premiere 视频编辑软件下载安装,pr全系列分享 轻松编辑视频

Adobe Premiere&#xff0c;自其诞生之日起&#xff0c;便以其卓越的性能和出色的表现&#xff0c;稳坐视频编辑领域的王者宝座&#xff0c;赢得了无数专业编辑人员与广大爱好者的青睐。这款强大的视频编辑软件&#xff0c;凭借其丰富的功能和灵活的操作性&#xff0c;为用户提…

(1)Jupyter Notebook 下载及安装

目录 1. Jupyter Notebook是什么&#xff1f;2. Jupyter Notebook特征3. 应用3. 利用Google Colab安装Jupyter Notebook3.1 什么是 Colab&#xff1f;3.2 访问 Google Colab 1. Jupyter Notebook是什么&#xff1f; 百度百科: Jupyter Notebook&#xff08;此前被称为 IPython …

函数创建单链表---无n型,需要 while 循环 + scanf

题目&#xff1a; #include <stdlib.h> struct link{int data;struct link *next; }; struct link* creatLink(); int main(){struct link *head,*p;headcreatLink();for(phead->next ;p;pp->next )printf("%d ",p->data );return 0; }/* 请在这里填…

501、二叉搜索树中的众数

给你一个含重复值的二叉搜索树&#xff08;BST&#xff09;的根节点 root &#xff0c;找出并返回 BST 中的所有 众数&#xff08;即&#xff0c;出现频率最高的元素&#xff09;。如果树中有不止一个众数&#xff0c;可以按 任意顺序 返回。 假定 BST 满足如下定义&#xff1…

泛微E9开发 根据故障来源新增明细行,并且初始化错误类型

根据故障来源新增明细行&#xff0c;并且初始化错误类型 1、需求说明2、实现方法3、扩展知识点3.1 批量修改字段值或显示属性3.1.1 格式3.1.2 参数3.1.3 演示 3.2 根据字段ID获取字段信息3.2.1 格式3.2.2 参数3.2.3 演示 1、需求说明 用户对出现故障的机器或设备进行判断问题判…

第十四届蓝桥杯省赛C++A组F题【买瓜】题解(AC)

70pts 题目要求我们在给定的瓜中选择一些瓜&#xff0c;可以选择将瓜劈成两半&#xff0c;使得最后的总重量恰好等于 m m m。我们的目标是求出至少需要劈多少个瓜。 首先&#xff0c;我们注意到每个瓜的重量最多为 1 0 9 10^9 109&#xff0c;而求和的重量 m m m 也最多为…

Linux高并发服务器开发(八)Socket和TCP

文章目录 1 IPV4套接字结构体2 TCP客户端函数 3 TCP服务器流程函数代码粘包 4 三次握手5 四次挥手6 滑动窗口 1 IPV4套接字结构体 2 TCP客户端 特点&#xff1a;出错重传 每次发送数据对方都会回ACK&#xff0c;可靠 tcp是打电话的模型&#xff0c;建立连接 使用连接 关闭连接…

探索SOLIDWORKS 2024设计增强功能

随着技术的不断进步和市场的日益竞争&#xff0c;工程设计和制造行业对于快捷、准确和创新的工具需求日益增长。SOLIDWORKS作为3D CAD设计软件&#xff0c;一直致力于为用户提供更强大、更便捷的设计工具。SOLIDWORKS 2024的发布&#xff0c;再次证明了其在设计增强功能方面的持…

代码随想录算法训练营Day55|42.接雨水、84.柱状图中最大的矩形

接雨水 42. 接雨水 - 力扣&#xff08;LeetCode&#xff09; 暴力解法 对计算接到的雨水&#xff0c;有两种方式&#xff0c;一是按照行来计算。 另一种是按列计算 按列计算容易不乱。基本思路如下&#xff1a; 对每列i进行循环&#xff0c;在循环中&#xff0c;找到该列左…

python-逻辑语句

if else语句 不同于C&#xff1a;else if range语句&#xff1a; continue continue的作用是&#xff1a; 中断所在循环的当次执行&#xff0c;直接进入下一次 continue在嵌套循环中的应用 break 直接结束所在的循环 break在嵌套循环中的应用 continue和break&#xff0c;在…

【TB作品】atmega16 计算器,ATMEGA16单片机,Proteus仿真

实验报告&#xff1a;基于ATmega16单片机的简易计算器设计 1. 实验背景 计算器是日常生活和工作中不可或缺的工具&#xff0c;通过按键输入即可实现基本的四则运算。通过本实验&#xff0c;我们将利用ATmega16单片机、矩阵键盘和LCD1602显示屏&#xff0c;设计并实现一个简易…

【TB作品】智能台灯,ATMEGA16单片机,Proteus仿真

智能台灯 1 adc检测光强光敏电阻 显示电压 2 光强太高 也就是高于临界值 就关闭小灯 3 光强太低 也就是低于临界值 就打开小灯 3 按键修改临界值 显示 实验报告&#xff1a;基于ATMEGA16单片机的智能台灯设计与Proteus仿真 1. 实验背景 智能台灯是一种能够根据环境光强自动调…

【Altium】AD-焊盘介绍

【更多软件使用问题请点击亿道电子官方网站】 1、 文档目标 介绍PCB设计工具中焊盘的组成 2、 知识点 为元件创建封装时&#xff0c;焊盘都是不可获取的部分&#xff0c;一个完整的焊盘&#xff0c;包含了哪些部分&#xff0c;各自又是什么作用。 3、软硬件环境 1&#xff…

算法笔记:模拟过程(螺旋遍历矩阵)

1 模拟过程 “模拟过程题”通常指的是那些要求编程者通过编写代码来“模拟”或重现某个过程、系统或规则的题目。这类题目往往不涉及复杂的数据结构或高级算法&#xff0c;而是侧重于对给定规则的精确执行和逻辑的清晰表达。 其中螺旋遍历矩阵的题目就是一类典型的模拟过程题…

学习笔记(linux高级编程)7

2._exit 系统调用 void _exit(int status); 功能: 让进程退出,不刷新缓存区 参数: status:进程退出状态 返回值: 缺省 回调函数 3.atexit int atexit(void (*function)(void)); 功能: 注册进程退出前执行的函数 参数: function:函数指针 指向void返回值void参数的函数指针 返…

吴恩达《LangChain for LLM Application Development》课程笔记

目录 1. 前言 2. 课程笔记 2.1. 模型、提示和解析器 2.2. LLM记忆&#xff0c;上下文管理 2.3. 链式操作 2.4. 文档问答 2.4.1. stuff 方法 2.4.2. 其他方法 2.5. LLM应用评估 2.6. 代理 2.6.1. 预定义工具 2.6.2. 自定义工具 代码资源&#xff1a; 1. 前言 LangC…

汇聚荣拼多多电商好不好?

拼多多电商好不好?这是一个值得探讨的问题。拼多多作为中国领先的电商平台之一&#xff0c;以其独特的商业模式和创新的营销策略吸引了大量用户。然而&#xff0c;对于这个问题的回答并不是简单的好或不好&#xff0c;而是需要从多个方面进行综合分析。 一、商品质量 来看拼多…

混合专家模型(MoE)的前世今生

在文章《聊聊最近很火的混合专家模型&#xff08;MoE&#xff09;》中&#xff0c;我们简单介绍了MoE模型的定义和设计&#xff0c;并且比较了MoE和Dense模型的区别&#xff0c;今天我们继续来回顾一下MoE模型发展的历史和最新的发展现状。 从去年GPT-4发布至今&#xff0c;MoE…