背景
提供免费算力支持,有交流群有值班教师答疑的华为昇思训练营进入第八天了。
今天是第八天,前七天的学习内容可以看链接
昇思25天学习打卡营第一天|快速入门
昇思25天学习打卡营第二天|张量 Tensor
昇思25天学习打卡营第三天|数据集Dataset
昇思25天学习打卡营第四天|数据变换Transforms
昇思25天学习打卡营第五天|网络构建
昇思25天学习打卡营第六天|函数式自动微分
昇思25天学习打卡营第七天|模型训练
学习内容
上一章节主要介绍了如何调整超参数,并进行网络模型训练。在训练网络模型的过程中,实际上我们希望保存中间和最后的结果,用于微调(fine-tune)和后续的模型推理与部署,本章节我们将介绍如何保存与加载模型。
保存和加载模型权重
保存模型使用save_checkpoint
接口,传入网络和指定的保存路径:
model = network()
mindspore.save_checkpoint(model, "model.ckpt")
要加载模型权重,需要先创建相同模型的实例,然后使用load_checkpoint
和load_param_into_net
方法加载参数。
model = network()
param_dict = mindspore.load_checkpoint("model.ckpt")
param_not_load, _ = mindspore.load_param_into_net(model, param_dict)
print(param_not_load)
保存和加载MindIR
除Checkpoint外,MindSpore提供了云侧(训练)和端侧(推理)统一的中间表示(Intermediate Representation,IR)。可使用export
接口直接将模型保存为MindIR。
model = network()
inputs = Tensor(np.ones([1, 1, 28, 28]).astype(np.float32))
mindspore.export(model, inputs, file_name="model", file_format="MINDIR")
MindIR同时保存了Checkpoint和模型结构,因此需要定义输入Tensor来获取输入shape。
已有的MindIR模型可以方便地通过load
接口加载,传入nn.GraphCell
即可进行推理。
nn.GraphCell
仅支持图模式。
总结
今天学的保存与加载,是模型训练后成果的检验。保存与加载完之后,就可以实际使用了。