13_旷视轻量化网络--ShuffleNet V2

news2025/2/26 14:57:13

回顾一下ShuffleNetV1:08_旷视轻量化网络--ShuffleNet V1-CSDN博客

1.1 简介

ShuffleNet V2是在2018年由旷视科技的研究团队提出的一种深度学习模型,主要用于图像分类和目标检测等计算机视觉任务。它是ShuffleNet V1的后续版本,重点在于提供更高效的模型设计,同时保持或提升模型的准确性。

核心设计理念:

  • 高效性与准确性并重:ShuffleNet V2的设计初衷是解决深度学习模型在移动端和嵌入式设备上部署时面临的效率与准确性之间的权衡问题。它旨在以最少的计算资源和内存占用,达到尽可能高的分类或检测准确率。

  • 通道重排(Channel Shuffle):这一特性从ShuffleNet V1继承而来,通过随机打乱不同组内的通道,促进特征的混合,增加模型的表达能力。这有助于模型学习到更加丰富的特征组合,从而提升性能。

主要创新点:

  1. 分层结构优化:不同于V1,V2版本通过引入更复杂的块(blocks)设计来优化网络结构。每个块可能包含多个路径,每个路径具有不同的功能,如特征提取、特征重组等,这样的设计能更高效地利用计算资源。

  2. 均衡通道宽度:研究发现,保持每层网络的通道数相对均衡可以减少内存访问的开销,并且对模型性能影响不大。因此,ShuffleNet V2采用了所有层通道数相等的设计原则,这有助于模型在移动设备上更快运行。

  3. 组卷积的改进应用:虽然组卷积能有效减少计算量,但过度分组会导致模型性能下降。V2通过精细调整组的数量和结构,找到了计算效率和模型性能之间的最佳平衡点。

  4. 直接面向实际运行速度的优化:在设计过程中,除了理论上的计算量(FLOPs)外,研究者还直接考虑了模型在实际硬件上的运行速度。这意味着在设计决策中融入了对实际部署环境的考量,包括CPU和GPU的特定性能特征。

  5. 计算和内存访问成本的细致优化:通过对模型内部的元素级操作(如ReLU、Addition)进行深入分析和优化,减少了不必要的计算负担和内存访问,进一步提升了模型的运行效率。

ShuffleNet V2由于其出色的效率和性能,在移动设备、智能安防、自动驾驶以及各种IoT设备上的视觉应用中得到了广泛应用。它的设计原则和优化思路也为后来的轻量化网络设计提供了宝贵的经验和指导,推动了深度学习模型在实际应用中的普及和发展。

shuffleNet出自论文《ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design》,下面我们来学习一下这篇论文。
 

1.2 四条轻量化网络设计原则

准则一和准则二:

对于V2,用了大量的分组1x1卷积。

准则三:(碎片化指分支多,网络较宽)

准则四:(尽量回避主元素操作)

1.3 V2的模型结构

ShuffleNet V2相比V1有几项关键改进和特点,这些改进主要是为了进一步提升模型的效率和准确性,特别是在移动端和嵌入式设备上的表现。以下是ShuffleNet V2相较于V1的一些主要特点:

  1. 更高效的结构设计
    • V2放弃了V1中的基于瓶颈模块的设计,转而采用一种新的结构,称为“ShuffleNet块”。这种设计通过重新安排层的顺序和结构,减少了计算成本,同时保持了模型的表达能力。
  2. 均衡的通道宽度
    • V2提出了一种“均衡通道宽度”的设计理念,即网络中所有层的通道数保持一致或接近。这与V1中通道数随深度增加而增加的做法不同。实验表明,这种设计能降低内存访问成本(MAC),提升运行效率,且对准确性影响较小。
  3. 优化的组卷积策略
    • 在V2中,对组卷积(group convolution)的使用进行了优化,避免了过量分组可能带来的性能下降。通过合理设置组数,V2在减少计算量的同时,确保了模型的表达能力不受太大影响。
  4. 直接优化实际运行速度
    • 设计时不仅考虑理论上的计算复杂度(FLOPs),更侧重于模型在实际设备上的运行速度。这意味着V2在设计时充分考虑了硬件特性,如内存带宽和计算单元的利用率。
  5. 减少元素级操作
    • 为了避免element-wise操作(如加法)造成的额外计算负担,V2中使用concatenation(连接操作)代替了部分element-wise操作,减少了计算成本,提升了运行效率。
  6. 通道重排的改进位置
    • 相对于V1中channel shuffle的位置,V2将其放置在block的不同位置,以更好地适应新的结构设计,进一步促进了特征的混合和信息的流通。
  7. 新增操作
    • 在全局平均池化(Global Average Pooling, GAP)之前添加了一个额外的卷积层(conv5),这是V2相比于V1的一个显著区别,旨在进一步提炼特征,提升模型的分类性能。

右侧是V2的结构。我们先看基本模块。V2在基本模块采用了一个“channel Split”操作,就是把一半的通道数走左边的路,另一半通道数走右边的路,且注意:V2的1x1卷积并不是像V1那样是分组1x1卷积。然后采用concat(摞在一起连接)操作而不是逐元素相加(ADD)的操作

可以看到V2是满足轻量化网络的四条设计原则的。

V2的模型结构如下图:

和DenseNet的特征复用相比较,类似的地方:

ShuffleNetV2通过模型的结构实现了不同层之前模型的共享和复用。这种效果和DenseNet相比是很类似的。

1.4 V2的性能

 图为ShuffleNetV2与部分其他轻量化的网络比较:

2.pytorch模型复现

马上更新

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1880597.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

架构师篇-10、DDD实战篇:通过领域模型落地系统

基于领域模型的设计与开发 数据库设计程序设计微服务设计 在线订餐系统的领域事件通知 微服务拆分 事件风暴会议 梳理领域事件进行领域建模识别聚合关系划分限界上下文 用户下单领域模型 更新后的模型 领域模型的设计实现过程 数据库设计 数据库映射:一对一关系…

cesium 添加 Echarts 图层(空气质量点图)

cesium 添加 Echarts 图层(下面附有源码) 1、实现思路 1、在scene上面新增一个canvas画布 2、通坐标转换,将经纬度坐标转为屏幕坐标来实现 3、将ecarts 中每个series数组中元素都加 coordinateSystem: ‘cesiumEcharts’ 2、示例代码 <!DOCTYPE html> <html lan…

EDA期末复习——基础知识

个人名片&#xff1a; &#x1f393;作者简介&#xff1a;嵌入式领域优质创作者&#x1f310;个人主页&#xff1a;妄北y &#x1f4de;个人QQ&#xff1a;2061314755 &#x1f48c;个人邮箱&#xff1a;[mailto:2061314755qq.com] &#x1f4f1;个人微信&#xff1a;Vir2025WB…

iconfont-阿里巴巴矢量图标库 在vue项目使用记录

官网地址&#xff1a;https://www.iconfont.cn/manage/index?manage_typemyprojects&projectId4539761 第一步&#xff1a; 下载资源 ->解压到项目文件夹 第二步 在项目中main.ts 或者main.js 引入资源 import //assets/iconfont/font/iconfont.js; import //assets…

【考研408计算机组成原理】微程序设计重要考点指令流水线考研真题+考点分析

苏泽 “弃工从研”的路上很孤独&#xff0c;于是我记下了些许笔记相伴&#xff0c;希望能够帮助到大家 目录 微指令的形成方式 微指令的地址形成方式 对应考题 题目&#xff1a;微指令的地址形成方式 - 断定方式 解题思路&#xff1a; 答题&#xff1a; 分析考点&…

【训练篇】MLU370-M8 完成 qwen1.5-7b-chat-lora训练及推理

文章目录 前言一、平台环境配置二、环境 or 模型准备1.模型下载2.环境准备2.1 modelscope2.2 transformers2.3 accelerate2.4 deepspeed2.5 peft2.6 环境代码修改 3训练代码准备4 代码修改 三&#xff0c;训练后推理验证四.推理效果展示1.微调前2.微调后 前言 本期我们采用魔塔…

局域网必备文件传输神器,吾爱再出精品,支持电脑、手机无缝对接!

今天给大家带来的不是一般的干货&#xff0c;而是一款让阿星我爱不释手的局域网文件传输神器&#xff0c;而且是吾爱大佬出品。无论是工作还是生活&#xff0c;它都能给你带来极大的便利。这年头&#xff0c;谁还没个跨设备传输文件的需求呢&#xff1f; 手机、电脑、平板&…

一个中文和越南语双语版本的助贷平台开源源码

一个中文和越南语双语版本的助贷平台开源源码。后台试nodejs。 后台 代理 前端均为vue源码&#xff0c;前端有中文和越南语。 前端ui黄色大气&#xff0c;逻辑操作简单&#xff0c;注册可对接国际短信&#xff0c;可不对接。 用户注册进去填写资料&#xff0c;后台审批&…

python(一)下载安装入门

一.下载安装 1、官网下载地址&#xff1a; Python Releases for Windows | Python.org 2、下载安装 1.下载python包&#xff1a;点击下载 2.安装 2.默认点击next即可 3.选择你想安装的路径&#xff0c;点击install即可 4.这里如果出现管理员字样&#xff0c;点击授权即可 安…

专题一: Spring生态初探

咱们先从整体脉络上看下Spring有哪些模块&#xff0c;重要的概念有个直观印象。 从Spring框架的整体架构和组成对整体框架有个认知。 Spring框架基础概念 Spring基础 - Spring和Spring框架组成 上图是从官网4.2.x获取的原图&#xff0c;目前我们使用最广法的版本应该都是5.x&am…

医院管理系统带万字文档医院预约挂号管理系统基于spingboot和vue的前后端分离java项目java课程设计java毕业设计

文章目录 仓库管理系统一、项目演示二、项目介绍三、万字项目文档四、部分功能截图五、部分代码展示六、底部获取项目源码带万字文档&#xff08;9.9&#xffe5;带走&#xff09; 仓库管理系统 一、项目演示 医院管理系统 二、项目介绍 基于springbootvue的前后端分离医院管…

鱼叉式钓鱼

鱼叉式网络钓鱼&#xff1a; 鱼叉式网络钓鱼是一种网络钓鱼形式&#xff0c;它针对特定个人或组织发送定制消息&#xff0c;旨在引发特定反应&#xff0c;例如泄露敏感信息或安装恶意软件。这些攻击高度个性化&#xff0c;使用从各种来源收集的信息&#xff0c;例如社交媒体资…

运维锅总详解Prometheus

本文尝试从Prometheus简介、架构、各重要组件详解、relable_configs最佳实践、性能能优化及常见高可用解决方案等方面对Prometheus进行详细阐述。希望对您有所帮助&#xff01; 一、Prometheus简介 Prometheus 是一个开源的系统监控和报警工具&#xff0c;最初由 SoundCloud …

【简易版tinySTL】 红黑树- 定义, 插入, 构建

文章目录 旋转左旋右旋 左旋右旋代码实现红黑树的基本性质红黑树的插入红黑树的插入示例红黑树修复代码实现参考资料 旋转 对于一个平衡二叉搜索树&#xff0c;左子树高度为4&#xff0c;右子树高度为2&#xff0c;它们的高度差为2&#xff0c;破坏了平衡性&#xff08;高度差&…

扩展阅读:什么是中断

如果用一句话概括操作系统的原理,那就是:整个操作系统就是一个中断驱动的死循环,用最简单的代码解释如下: while(true){doNothing(); } 其他所有事情都是由操作系统提前注册的中断机制和其对应的中断处理函数完成的。我们点击一下鼠标,敲击一下键盘,执行一个程序,…

忙忙碌碌的混沌之中差点扑了个空而错过年中这条线

文章目录 前言初见端倪混沌初始力不从心心力交瘁拾遗补缺总结 前言 突然意识到过完这个周末已经7月份了&#xff0c;他预示着我的2024年已经过半了&#xff0c;过年回家仿佛还是昨天的事情&#xff0c;怎么转眼间已经到了年中了。心里还是不愿承认这件事&#xff0c;翻开自己2…

使用NFS网关功能将HDFS挂载到本地系统

HDFS安装教程 HDFS安装教程http://t.csdnimg.cn/2ziFd 使用NFS网关功能将HDFS挂载到本地系统 简介 HDFS提供了基于NFS&#xff08;Network File System&#xff09;的插件&#xff0c;可以对外提供NFS网关&#xff0c;供其它系统挂载使用。 NFS 网关支持 NFSv3&#xff0c;并…

etcdctl txn如何使用

TXN 从标准输入中读取多个请求&#xff0c;并将它们应用到单个原子的事务操作中。一个事务包含 一系列的条件、所有条件都满足时要执行的一系列请求、任意条件不满足时要执行的一系列请求。 开启事务&#xff1a; etcdctl txn -i 开启事务后&#xff0c;需要先输入判断条件&a…

Studying-代码随想录训练营day24| 93.复原IP地址、78.子集、90.子集II

第24天&#xff0c;回溯算法part03&#xff0c;牢记回溯三部曲&#xff0c;掌握树形结构结题方法&#x1f4aa; 目录 93.复原IP地址 78.子集 90.子集II 总结 93.复原IP地址 文档讲解&#xff1a;代码随想录复原IP地址 视频讲解&#xff1a;手撕复原IP地址 题目&#xff1…

前端小白必学:对Cookie、localStorage 和 sessionStorage 的简单理解

前言 Cookie、localStorage 和 sessionStorage 作为Web开发领域中广泛采用的三种客户端数据存储技术&#xff0c;它们各自拥有独特的优势、应用场景及限制条件&#xff0c;共同支撑起前端数据管理的多样化需求。也是面试常考题之一&#xff0c;今天就和大家简单谈一下我对它们…