hadoop词频统计

news2024/11/24 2:41:11

1 Hadoop 安装与伪分布的搭建

2 Hadoop词频统计

此文章基于搭建好hadoop之后做的词频统计实验,以上是链接为搭建hadoop的教程

目录

1 HDFS 文件系统常用命令

2 词频统计实验准备工作

2.1 启动hadoop 关闭防火墙

2.2 查看图形化界面

2.3 文件上传

3 词频统计

3.1 方法一:使用hadoop自带的jar包文件

3.2 方法二:编写java程序打包jar包


1 HDFS 文件系统常用命令

# 显示HDFS根目录下的文件和目录列表
hadoop fs -ls /

# 创建HDFS目录
hadoop fs -mkdir /path/to/directory

# 将本地文件上传到HDFS
hadoop fs -put localfile /path/in/hdfs

# 将HDFS上的文件下载到本地
hadoop fs -get /path/in/hdfs localfile

# 显示HDFS上的文件内容
hadoop fs -cat /path/in/hdfs

# 删除HDFS上的文件或目录
hadoop fs -rm /path/in/hdfs
# 递归删除目录
hadoop fs -rm -r /path/in/hdfs

# 移动或重命名HDFS上的文件或目录
hadoop fs -mv /source/path /destination/path

# 复制HDFS上的文件或目录
hadoop fs -cp /source/path /destination/path

# 显示HDFS上文件的元数据
hadoop fs -stat %n /path/in/hdfs

# 设置HDFS上文件的权限
hadoop fs -chmod 755 /path/in/hdfs

# 设置HDFS上文件的所有者和所属组
hadoop fs -chown user:group /path/in/hdfs

2 词频统计实验准备工作

2.1 启动hadoop 关闭防火墙

[root@hadoop ~]# start-all.sh 
Starting namenodes on [localhost]
Starting datanodes
Starting secondary namenodes [hadoop]
Starting resourcemanager
Starting nodemanagers
[root@hadoop ~]# systemctl stop firewalld.service 

2.2 查看图形化界面

查看ip地址

输入ip地址+9870

这是在HDFS文件系统上的文件

在虚拟机上使用命令同样也能看到

2.3 文件上传

网上随便找一篇英语短文,作为单词统计的文档

[root@hadoop ~]# mkdir /wordcount
[root@hadoop ~]# cd /wordcount/
[root@hadoop wordcount]# vim words2.txt

英语文章实例

Once a circle missed a wedge. The circle wanted to be whole,so it went around looking for its missing piece.But because it was incomplete and therefore could roll only very slowly,it admired the flowers along the way.It chatted with worms.It enjoyed the sunshine.It found lots of different pieces,but none of them fit.So it left them all by the side of the road and kept on searching.Then one day the circle found a piece that fit perfectly.It was so happy.Now it could be whole,with nothing missing.It incorporated the missing piece into itself and began to roll.Now that it was a perfect circle,it could roll very fast,too fast to notice the flowers or talking to the worms.When it realized how different the world seemed when it rolled so quickly,it stopped,left its found piece by the side of the road and rolled slowly away.

在HDFS文件系统中根目录创建 input 目录

我这里目录已经创建过了所以会显示已存在

[root@hadoop wordcount]# hadoop fs -mkdir /input
mkdir: `/input': File exists

上传文件到HDFS文件系统

[root@hadoop wordcount]# hadoop fs -put /wordcount/words2.txt  /input

浏览器查看是否上传成功

2.4 配置hadoop的classpath

[root@hadoop wordcount]# hadoop classpath
/opt/hadoop/etc/hadoop:/opt/hadoop/share/hadoop/common/lib/*:/opt/hadoop/share/hadoop/common/*:/opt/hadoop/share/hadoop/hdfs:/opt/hadoop/share/hadoop/hdfs/lib/*:/opt/hadoop/share/hadoop/hdfs/*:/opt/hadoop/share/hadoop/mapreduce/*:/opt/hadoop/share/hadoop/yarn:/opt/hadoop/share/hadoop/yarn/lib/*:/opt/hadoop/share/hadoop/yarn/*
               
[root@hadoop wordcount]# vim /opt/hadoop/etc/hadoop/yarn-site.xml

3 词频统计

在文件系统上有了文章可以开始词频统计了

3.1 方法一:使用hadoop自带的jar包文件

查看jar包放在哪个目录下了

[root@hadoop wordcount]# find $HADOOP_HOME/ -name mapreduce

移动到这个目录下

[root@hadoop wordcount]# cd /opt/hadoop/share/hadoop/mapreduce/
[root@hadoop mapreduce]# ls
hadoop-mapreduce-client-app-3.3.6.jar              hadoop-mapreduce-client-nativetask-3.3.6.jar
hadoop-mapreduce-client-common-3.3.6.jar           hadoop-mapreduce-client-shuffle-3.3.6.jar
hadoop-mapreduce-client-core-3.3.6.jar             hadoop-mapreduce-client-uploader-3.3.6.jar
hadoop-mapreduce-client-hs-3.3.6.jar               hadoop-mapreduce-examples-3.3.6.jar
hadoop-mapreduce-client-hs-plugins-3.3.6.jar       jdiff
hadoop-mapreduce-client-jobclient-3.3.6.jar        lib-examples
hadoop-mapreduce-client-jobclient-3.3.6-tests.jar  sources

找到一个叫hadoop-mapreduce-examples-3.3.6.jar 的文件

这个文件是hadoop自带的专门做词频统计的jar包

选择jar包运行java程序对文章进行词频统计

[root@hadoop mapreduce]# hadoop jar hadoop-mapreduce-examples-3.3.6.jar wordcount /input/words2.txt /output

查看根目录多出了个output目录,点击他

得出结果

同样在虚拟机上也可查看

3.2 方法二:编写java程序打包jar包

使用的软件为idea

新建项目

将以下代码插入pom.xml 中

<dependencies>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>3.3.2</version>
        </dependency>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.13.2</version>
        </dependency>
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-log4j12</artifactId>
            <version>1.7.36</version>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.6.1</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                </configuration>
            </plugin>
            <plugin>
                <artifactId>maven-assembly-plugin</artifactId>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

插入之后点击

添加以下内容

log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

编写java类

WordCountDriver    ---主类

WordCountMapper

WordCountReducer

代码如下

WordCountDriver

package com.hadoop.mapreducer.wordcount;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class WordCountDriver {
    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
        //1.获取job
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);

        //2.设置jar包路径
        job.setJarByClass(WordCountDriver.class);

        //3.关联mapper和reducer
        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordCountReducer.class);

        //4.设置map输出kv类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        //5.设置最终输出kv类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        //6.设置输入路径和输出路径
        FileInputFormat.setInputPaths(job,new Path(args[0]));
        FileOutputFormat.setOutputPath(job,new Path(args[1]));
        //7.提交job
        boolean result = job.waitForCompletion(true);

        System.exit(result?0:1);
    }
}

WordCountMapper

package com.hadoop.mapreducer.wordcount;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class WordCountMapper extends Mapper<LongWritable,Text,Text, IntWritable> {
    //为了节省空间,将k-v设置到函数外
    private Text outK=new Text();
    private IntWritable outV=new IntWritable(1);


    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {
        //获取一行输入数据
        String line = value.toString();
        //将数据切分
        String[] words = line.split(" ");
        //循环每个单词进行k-v输出
        for (String word : words) {
            outK.set(word);
            //将参数传递到reduce
            context.write(outK,outV);
        }
    }
}

WordCountReducer

package com.hadoop.mapreducer.wordcount;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class WordCountReducer extends Reducer<Text, IntWritable,Text,IntWritable> {
    //全局变量输出类型
    private IntWritable outV = new IntWritable();
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {		//设立一个计数器
        int sum=0;
        //统计单词出现个数
        for (IntWritable value : values) {
            sum+=value.get();
        }
        //转换结果类型
        outV.set(sum);
        //输出结果
        context.write(key,outV);
    }
}

可能会出现报红

打包jar包

这时候会出现两个jar包使用第一个就可以了

将jar包移动到linux下

[root@hadoop wordcount]# hadoop jar hadoop03-1.0-SNAPSHOT.jar com.hadoop.mapreducer.wordcount.WordCountDriver /input/words2.txt /output

执行成功

动图演示

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1879828.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

实现点击按钮导出页面pdf

在Vue 3 Vite项目中&#xff0c;你可以使用html2canvas和jspdf库来实现将页面某部分导出为PDF文档的功能。以下是一个简单的实现方式&#xff1a; 1.安装html2canvas和jspdf&#xff1a; pnpm install html2canvas jspdf 2.在Vue组件中使用这些库来实现导出功能&#xff1a;…

ios13多窗口(UIWindowScene)学习笔记

ios13引入了UIWindowScene类、UIWindowSceneDelegate协议以便支持多窗口功能&#xff0c;但其适用于ipad&#xff0c;不适用于iphone&#xff0c;因为iphone不支持多窗口功能。注意&#xff0c;这里说的窗口不是UIWindow&#xff0c;而是UIWindowScene。 ios13前后的app的UI架…

结构体 -------- 函数-------传参

在函数题中 return 只能传一个值 如果函数体&#xff08;struct fs a&#xff0c;struct fs b&#xff09;传来了两个值&#xff0c;怎么才能只输出一个值呢&#xff1f; 同样要定义一个struct fs 类型的变量 result&#xff1b; 这样不仅可以访问到结构体中的变量a&#…

ESP32实现UDP连接——micropython版本

代码&#xff1a; import network import socket import timedef wifiInit(name, port):ap network.WLAN(network.AP_IF) # 创建一个热点ap.config(essidname, authmodenetwork.AUTH_OPEN) # 无需密码ap.active(True) # 激活热点ip ap.ifconfig()[0] # 获取ip地址print(…

短视频矩阵系统:打造品牌影响力的新方式

一、短视频矩阵概念 短视频营销革命&#xff1a;一站式解决策略&#xff01;短视频矩阵系统是一款专为企业营销设计的高效工具&#xff0c;旨在通过整合和优化众多短视频平台资源&#xff0c;为企业呈现一个全面的短视频营销策略。该系统致力于协助企业以迅速且高效的方式制作…

Node.js全栈指南:静态资源服务器

上一章【认识 MIME 和 HTTP】。 我们认识和了解了 MIME 的概念和作用&#xff0c;也简单地学习了通过浏览器控制台查看请求和返回的用法。 通过对不同的 HTML、CSS、JS 文件进行判断&#xff0c;设置不同的 MIME 值&#xff0c;得以让我们的浏览器正正确地接收和显示不同的文…

2095.删除链表的中间节点

给你一个链表的头节点 head 。删除链表的中间节点 &#xff0c;并返回修改后的链表的头节点 head。 长度为 n 链表的中间节点是从头数起第 ⌊n / 2⌋ 个节点&#xff08;下标从 0 开始&#xff09;&#xff0c;其中 ⌊x⌋ 表示小于或等于 x 的最大整数。 对于 n 1、2、3、4 和…

逻辑这回事(七)---- 器件基础

Xilinx FPGA创建了先进的硅模块(ASMBL)架构,以实现FPGA具有针对不同应用程序领域优化的各种功能组合的平台。通过这一创新,Xilinx提供了更多的设备选择,使客户能够为其特定设计选择具有正确的功能和功能组合的FPGA。ASMBL体系结构通过以下方式突破了传统的设计障碍:消除几…

HarmonyOS Next开发学习手册——选项卡 (Tabs)

当页面信息较多时&#xff0c;为了让用户能够聚焦于当前显示的内容&#xff0c;需要对页面内容进行分类&#xff0c;提高页面空间利用率。 Tabs 组件可以在一个页面内快速实现视图内容的切换&#xff0c;一方面提升查找信息的效率&#xff0c;另一方面精简用户单次获取到的信息…

大家都在跳槽,我需要跳槽吗?

文章目录 1. 前言2. 最初的跳槽想法萌芽3. 跳槽想法的再次萌芽4. 我是否需要跳槽呢?5. 那些跳槽的同学怎么样了&#xff1f;6. 小结 1. 前言 两周前&#xff0c;看到研究生同班同学发的一条朋友圈&#xff0c;内容为”下一站 杭州~”&#xff0c;配图是拍的北京开往杭州的列车…

软件框架(Framework)是什么?

可实例化的、部分完成的软件系统或子系统&#xff0c;它为一组系统或子系统定义了统一的体系结构(architecture)&#xff0c;并提供了构造系统的基本构造块(building blocks)&#xff0c;还为实现具体功能定义了扩展点(extending points)。 框架实现了体系结构级别的复用。 其…

八爪鱼现金流-031,宽带到期记一笔负债

到期了&#xff0c;新弄的网络&#xff0c;记录一下负债包。 八爪鱼现金流 八爪鱼

昇思25天学习打卡营第4天|函数式自动微分

学习目标&#xff1a; 重温高数知识&#xff0c;回顾导数、微分、偏导数‘全微分、方向导数、梯度&#xff1b;斜率、切线、切平面&#xff0c;法相平面、法线的知识’ 函数微分与导数的含义 多元函数偏导数、全微分 函数式自动微分应用实践 昇思大模型 &#xff0c;mindspor…

STM32第十三课:DMA多通道采集光照烟雾

文章目录 需求一、DMA&#xff08;直接存储器存取&#xff09;二、实现流程1.时钟使能2.设置外设寄存器地址3.设置存储器地址4.设置要传输的数据量5.设置通道优先级6.设置传输方向7.使通道和ADC转换 三、数据处理四、需求实现总结 需求 通过DMA实现光照强度和烟雾浓度的多通道…

JAVA期末速成库(12)第十三章

一、习题介绍 第十三章 Check Point&#xff1a;P501 13.3&#xff0c;13.17&#xff0c;13.28&#xff0c;13.29 Programming Exercise&#xff1a;13.1&#xff0c;13.6&#xff0c;13.11 二、习题及答案 Check Point&#xff1a; 13.3 True or false? a. An abst…

【做一道算一道】太平洋大西洋水流问题

太平洋大西洋水流问题 有一个 m n 的矩形岛屿&#xff0c;与 太平洋 和 大西洋 相邻。 “太平洋” 处于大陆的左边界和上边界&#xff0c;而 “大西洋” 处于大陆的右边界和下边界。 这个岛被分割成一个由若干方形单元格组成的网格。给定一个 m x n 的整数矩阵 heights &…

零基础开始学习鸿蒙开发-读书app简单的设计与开发

目录 1.首页设计 2.发现页面的设计 3.设置页面的设计 4.导航页设计 5.总结&#xff1a; 6.最终的效果 1.首页设计 Entry Component export struct home {State message: string 首页build() {Row() {Column() {Text(this.message).fontSize(50).fontWeight(FontWeight.B…

Golang-map理解

golang-map语雀笔记整理 map的底层实现hmapbmap map是如何做到O(1)的复杂度的&#xff1f;map扩容策略 师兄问题回答 map的底层实现 hmap hmap的结构体核心字段有&#xff1a;buckets 桶数组地址&#xff0c; B 定位值&#xff0c;桶的数目是2^B个&#xff0c; count 当前map的…

Java基础(三)——类和对象、构造方法

个人简介 &#x1f440;个人主页&#xff1a; 前端杂货铺 ⚡开源项目&#xff1a; rich-vue3 &#xff08;基于 Vue3 TS Pinia Element Plus Spring全家桶 MySQL&#xff09; &#x1f64b;‍♂️学习方向&#xff1a; 主攻前端方向&#xff0c;正逐渐往全干发展 &#x1…

Vue-cli项目及Element UI 环境搭建 保姆级教程

一、Vue-cli介绍及其作用 什么是Vue-cli手脚架 vue-cli 官方提供的一个脚手架&#xff0c;用于快速生成一个 vue 的项目模板&#xff1b;预先定义 好的目录结构及基础代码&#xff0c;就好比咱们在创建 Maven 项目时可以选择创建一个 骨架项目&#xff0c;这个骨架项目就是脚…