GMSB文章八:微生物中介分析

news2025/1/12 12:03:12

欢迎大家关注全网生信学习者系列:

  • WX公zhong号:生信学习者
  • Xiao hong书:生信学习者
  • 知hu:生信学习者
  • CDSN:生信学习者2

介绍

中介分析(Mediation Analysis)是一种统计方法,用于研究一个自变量(通常是独立变量或预测变量)如何通过一个或多个中介变量(也称为中介因素或中介机制)影响因变量(通常是响应变量或结果变量)。中介分析的目的是揭示变量之间的内在关系,特别是自变量对因变量的间接效应,以及这种效应是如何通过中介变量传递的。

评估识别出的与结局变量显著相关的标记物如炎症细胞因子cytokines肠道微生物gut microbiota短链脂肪酸SCFA是否能够在伴侣数目number of partnersHIV-1血清转化HIV-1 seroconversion之间起到中介作用。

自然效应模型(Natural Effect Model)是一种统计方法,用于估计在自然情况下(即在没有干预或随机分配的情况下)变量之间的因果关系。在流行病学和临床研究中,这种模型特别有用,因为它可以帮助研究者了解不同因素对健康结果的自然影响。以下是中介分析的变量解析:

  • exposure variables (自变量X): consisting of sexual exposure groups

  • mediators (中介变量M): biomarkers (cytokines, gut microbiota, SCFA)

  • outcome variable (因变量Y): HIV-1 seroconversion status

加载R包

library(readr)
library(openxlsx)
library(tidyverse) 
library(microbiome)
library(mia)
library(compositions)
library(medflex)
library(ggsci)
library(ggpubr)

导入数据

大家通过以下链接下载数据:

  • 百度网盘链接:https://pan.baidu.com/s/1fz5tWy4mpJ7nd6C260abtg
  • 提取码: 请关注WX公zhong号_生信学习者_后台发送 复现gmsb 获取提取码
df_v1 <- read_csv("./data/GMSB-data/df_v1.csv", show_col_types = FALSE)

bias_corr_species <- read_csv("./data/GMSB-data/results/outputs/bias_corr_species.csv")

sig_species_raw1 <- read.xlsx("./data/GMSB-data/results/outputs/res_ancombc2.xlsx", sheet = 1) 
sig_species_raw2 <- read.xlsx("./data/GMSB-data/results/outputs/res_ancombc2.xlsx", sheet = 2) 

# 趋势分析结果
ne_trend_test <- readRDS("./data/GMSB-data/rds/ne_trend_test.rds")

数据预处理

  • 提取差异物种丰度表

  • 合并分组变量和差异物种丰度表

df_v1 <- df_v1 %>%
  dplyr::filter(
         group1 != "missing",
         druguse != "missing")

# Microbiome data
bias_corr_species <- bias_corr_species %>%
  dplyr::rowwise() %>%
  dplyr::filter(grepl("Species:", species)|grepl("Genus:", species)) %>%
  dplyr::mutate(species = ifelse(grepl("Genus:", species), 
                        paste(strsplit(species, ":")[[1]][2], "spp."),
                        strsplit(species, ":")[[1]][2])) %>%
  dplyr::ungroup() 

# Significant taxa by group
sig_species1 <- sig_species_raw1 %>%
  dplyr::filter(p_val < 0.05) %>%
  .$taxon

# Significant taxa by status
sig_species2 <- sig_species_raw2 %>%
  dplyr::filter(p_statussc < 0.05) %>%
  .$taxon

sig_species <- sort(base::intersect(sig_species1, sig_species2))

# Subset significant taxa
df_da_species <- bias_corr_species %>%
  dplyr::filter(species %in% sig_species)
df_da_species <- t(df_da_species)
colnames(df_da_species) <- df_da_species[1, ]
df_da_species <- data.frame(df_da_species[-1, , drop = FALSE], check.names = FALSE) %>%
  rownames_to_column("sampleid") %>%
  dplyr::mutate(across(-1, as.numeric))

# Exposure, outcome, confounders, and potential mediators
# cytokines overlap: sCD14 and sCD163
# SCFA overlap: none
df_causal <- df_v1 %>%
  dplyr::select(sampleid, recept_anal, group1, status, druguse, cd14, cd163) %>%
  dplyr::left_join(df_da_species, by = "sampleid")
df_causal$status <- factor(df_causal$status)
df_causal$group1 <- factor(df_causal$group1)
df_causal$druguse <- factor(df_causal$druguse)
df_causal <- data.frame(df_causal)

head(df_causal)
sampleidrecept_analgroup1statusdrugusecd14cd163Dehalobacterium.spp.Bacteroides.spp.
1F-15g3ncyes1681.160665.6528NA0.1151280
2F-26g4ncyes1178.440336.1164-0.1870557-1.0903494
3F-33g3ncyes1717.935495.9060NA-0.3093994
4F-47g4ncyes1271.675536.5375NA-3.3221487
5F-54g3ncyes929.645472.6636-1.1128170-1.2803083
6F-64g3ncno1103.670382.0072NA1.8015313

函数

  • constrain_est:提取约束线性模型的beta值

  • l_infty:计算l_infty norm值

  • trend_test:趋势检验

# Estimate coefficients under constraints
constrain_est <- function(
  beta_hat, 
  vcov_hat, 
  contrast, 
  solver = "ECOS") {
  
  beta_opt <- CVXR::Variable(rows = length(beta_hat), cols = 1, name = "beta")
  obj <- CVXR::Minimize(CVXR::matrix_frac(beta_opt - beta_hat, vcov_hat))
  cons <- suppressMessages(contrast %*% beta_opt >= 0)
  problem <- CVXR::Problem(objective = obj, constraints = list(cons))

  suppressMessages(result <- try(CVXR::solve(problem, solver = solver), silent = TRUE))

  if (inherits(result, "try-error")) {
    beta_opt <- rep(0, length(beta_hat))
  } else {
    beta_opt <- as.numeric(result$getValue(beta_opt))
  }
  
  return(beta_opt)
}

# Compute the l_infty norm for a pattern
l_infty <- function(
  beta_opt, 
  node) {
  
  l <- max(abs(beta_opt[node]),
           abs(beta_opt[node] - beta_opt[length(beta_opt)]),
           na.rm = TRUE)
  
  return(l)
}

# Trend test
trend_test <- function(
  beta_hat, 
  vcov_hat, 
  contrast, 
  solver = "ECOS",
  node, 
  B = 1000) {
  
  beta_opt <- constrain_est(
    beta_hat = beta_hat,
    vcov_hat = vcov_hat,
    contrast = contrast,
    solver = solver)
  
  l_opt <- l_infty(beta = beta_opt, node = node)
  beta_null <- MASS::mvrnorm(
    n = B, 
    mu = rep(0, length(beta_hat)), 
    Sigma = vcov_hat)
  
  l_null <- apply(beta_null, 1, function(x) {
    beta_trend <- constrain_est(beta_hat = x, 
                               vcov_hat = vcov_hat, 
                               contrast = contrast,
                               solver = solver)
    l_trend <- l_infty(beta = beta_trend, node = node)
  })
  
  p_trend <- 1/B * sum(l_null > l_opt)
  
  res <- list(estimate = beta_opt,
              test_statistic = l_opt,
              p_value = p_trend)
  
  return(res)
}

contrast_mat <- matrix(
  c(1, 0, 0, 
    -1, 1, 0,
    0, -1, 1),
  nrow = 3, byrow = TRUE)

Cytokine mediators

炎症细胞因子作为中介变量

All cytokines

  • 多重插补medflex::neImpute()

    • 使用medflex::neImpute()函数进行多重插补。
    • status是响应变量,而group1, cd14, cd163, druguse是预测变量。
    • family = binomial(“logit”)指定了使用逻辑斯蒂回归模型,适用于二分类结果的变量。
    • nMed = 2表示生成两个不同的插补数据集。
    • group1生成了group10group11两个插补数据集。
    • 这个步骤是为了处理数据中的缺失值,通过生成多个完整的数据集来模拟缺失数据的可能值。
  • 构建自然效应模型Natural effects model

    • 使用medflex::neModel()函数来拟合自然效应模型。
    • 公式status ~ group10 + group11 + druguse定义了模型,其中status是响应变量,group10, group11, druguse是预测变量。group10group11来自medflex::neImpute()函数的多重插补。
    • family = binomial(“logit”)再次指定了模型的分布族和链接函数。expData = df_exp指定了使用经过多重插补的数据集来进行模型拟合。
    • se = "robust"表示使用稳健的标准误差估计,这有助于在模型估计中减少异方差性的影响。
  • 中介分析使用Natural effects model

    • exposure variables (自变量X): consisting of sexual exposure groups
    • mediators (中介变量M): cytokines
    • outcome variable (因变量Y): HIV-1 seroconversion status
    • adjusted variable (混淆变量): druguse
    • NDE: natural direct effect(自变量X不经过中介变量M直接对因变量Y的效应大小)
    • NIE: natural indirect effect(自变量X仅通过中介变量M间接对因变量Y的效应大小)
df <- df_causal %>%
  dplyr::select(status, group1, cd14, cd163, druguse) %>%
  drop_na()

df_exp <- medflex::neImpute(
  status ~ group1 + cd14 + cd163 + druguse,
  family = binomial("logit"), 
  nMed = 2, 
  data = df)

ne_mod <- medflex::neModel(
  status ~ group10 + group11 + druguse,
  family = binomial("logit"), 
  expData = df_exp, 
  se = "robust")

summ <- summary(ne_mod)
df_summ <- data.frame(summ$coefficients)

# Trend test
# set.seed(123)
# trend_nde <- trend_test(
#   beta_hat = summ$coefficients[2:4, "Estimate"],
#   vcov_hat = ne_mod$vcov[2:4, 2:4],
#   contrast = contrast_mat,
#   node = 3, B = 1000)
# 
# set.seed(123)
# trend_nie <- trend_test(
#   beta_hat = summ$coefficients[5:7, "Estimate"],
#   vcov_hat = ne_mod$vcov[5:7, 5:7],
#   contrast = contrast_mat,
#   node = 3, B = 1000)
# 
# ne_trend_test <- base::append(
#   ne_trend_test,
#   list(cyto_nde = trend_nde, cyto_nie = trend_nie))

# Outputs
types <- c("nde", "nie")
groups <- c("g2", "g3", "g4")
res <- data.frame(
  type = rep(types, each = length(groups)),
  group = rep(groups, length(types)), 
  estimate = NA, se = NA, p = NA,
  trend_p = NA)

res$estimate <- round(df_summ$Estimate[2:7], 2)
res$se <- round(df_summ$Std..Error[2:7], 2)
res$p <- round(df_summ$Pr...z..[2:7], 3)
res$trend_p[3] <- round(ne_trend_test$cyto_nde$p_value, 3)
res$trend_p[6] <- round(ne_trend_test$cyto_nie$p_value, 3)

head(res)
typegroupestimateseptrend_p
1ndeg21.920.640.003NA
2ndeg32.560.610.000NA
3ndeg43.550.700.0000.000
4nieg20.110.100.284NA
5nieg30.120.090.168NA
6nieg40.330.140.0230.007

结果炎症细胞因子cytokines在不同分组的直接和间接效应的结果

  • nde直接效应:具体来说,对于没有druguse的受试者,增加从第1组到另一组的暴露【同时保持sCD14和sCD163在同一水平】显着增加了血清转化的几率。第2、3、4组的优势比为exp(1.92) = 6.82; Exp (2.56) = 12.94, Exp (3.55) = 34.81;

  • nie间接效应,对于未druguse的受试者,将sCD14和sCD163的水平从第1组观察到的水平转移到第4组可能看到的水平,同时在任何给定组保持暴露不变,增加血清转化的几率,比值比为exp(0.33) = 1.39。炎症因子水平从g1组水平转变成g4组,则对应HIV-1血清风险增加。

Individual cytokines

单个细胞因子的中介分析

features <- c("cd14", "cd163")
groups <- c("g2", "g3", "g4")
res_nde <- data.frame(type = "nde",
                     feature = rep(features, each = length(groups)), 
                     group = rep(groups, length(features)), 
                     estimate = NA, se = NA, p = NA)
res_nie <- data.frame(type = "nie",
                     feature = rep(features, each = length(groups)), 
                     group = rep(groups, length(features)), 
                     estimate = NA, se = NA, p = NA)

for (i in seq_along(features)) {
  df <- df_causal %>%
    dplyr::select(status, group1, druguse, all_of(features[i])) %>%
    drop_na()

  t_formula <- as.formula(paste0("status ~ group1 + ", features[i], " + druguse"))
  df_exp <- neImpute(t_formula, family = binomial("logit"), data = df)
  ne_mod <- neModel(status ~ group10 + group11 + druguse,
                   family = binomial("logit"), expData = df_exp, se = "robust")
  summ <- summary(ne_mod)
  
  idx <- seq_along(groups) + (i - 1) * length(groups)
  res_nde[idx, "estimate"] <- round(summ$coefficients[2:4, "Estimate"], 2)
  res_nde[idx, "se"] <- round(summ$coefficients[2:4, "Std. Error"], 2)
  res_nde[idx, "p"] <- round(summ$coefficients[2:4, "Pr(>|z|)"], 3)
  
  res_nie[idx, "estimate"] <- round(summ$coefficients[5:7, "Estimate"], 2)
  res_nie[idx, "se"] <- round(summ$coefficients[5:7, "Std. Error"], 2)
  res_nie[idx, "p"] <- round(summ$coefficients[5:7, "Pr(>|z|)"], 3)
}

res <- rbind(res_nde, res_nie)

head(res)
typefeaturegroupestimatesep
1ndecd14g21.990.640.002
2ndecd14g32.590.610.000
3ndecd14g43.660.690.000
4ndecd163g22.010.650.002
5ndecd163g32.690.620.000
6ndecd163g43.760.710.000

Microbial species

炎症细胞因子作为中介变量

All species

  • 中介分析使用Natural effects model

    • exposure variables (自变量X): consisting of sexual exposure groups
  • mediators (中介变量M): gut microbiota
    • outcome variable (因变量Y): HIV-1 seroconversion status
  • adjusted variable (混淆变量): druguse
# Natural effects model
all_species <- colnames(df_causal)[8:16]
df <- df_causal %>%
  dplyr::select(status, group1, druguse, all_of(all_species))
df[is.na(df)] <- 0

t_formula <- as.formula(paste0("status ~ group1 + ", 
                              paste0(all_species, collapse = " + "), 
                              " + druguse"))
df_exp <- neImpute(
  t_formula,
  family = binomial("logit"), 
  nMed = length(all_species), 
  data = df)

ne_mod <- neModel(
  status ~ group10 + group11 + druguse,
  family = binomial("logit"), 
  expData = df_exp, 
  se = "robust")

summ <- summary(ne_mod)
df_summ <- data.frame(summ$coefficients)

# Trend test
# set.seed(123)
# trend_nde <- trend_test(beta_hat = summ$coefficients[2:4, "Estimate"],
#                        vcov_hat = ne_mod$vcov[2:4, 2:4],
#                        contrast = contrast_mat,
#                        node = 3, B = 1000)
# set.seed(123)
# trend_nie <- trend_test(beta_hat = summ$coefficients[5:7, "Estimate"],
#                        vcov_hat = ne_mod$vcov[5:7, 5:7],
#                        contrast = contrast_mat,
#                        node = 3, B = 1000)
# 
# ne_trend_test <- base::append(ne_trend_test,
#                              list(species_nde = trend_nde, species_nie = trend_nie))

# Outputs
type <- c("nde", "nie")
groups <- c("g2", "g3", "g4")
res <- data.frame(type = rep(types, each = length(groups)), 
                 group = rep(groups, length(type)), 
                 estimate = NA, se = NA, p = NA,
                 trend_p = NA)
res$estimate <- round(df_summ$Estimate[2:7], 2)
res$se <- round(df_summ$Std..Error[2:7], 2)
res$p <- round(df_summ$Pr...z..[2:7], 3)
res$trend_p[3] <- round(ne_trend_test$species_nde$p_value, 3)
res$trend_p[6] <- round(ne_trend_test$species_nie$p_value, 3)

head(res)
typegroupestimateseptrend_p
1ndeg22.080.680.002NA
2ndeg32.610.640.000NA
3ndeg43.580.710.0000.000
4nieg20.020.130.879NA
5nieg30.150.130.264NA
6nieg40.350.170.0450.033

Individual species

features <- sort(all_species)
groups <- c("g2", "g3", "g4")
res_nde <- data.frame(type = "nde",
                     feature = rep(features, each = length(groups)), 
                     group = rep(groups, length(features)), 
                     estimate = NA, se = NA, p = NA)
res_nie <- data.frame(type = "nie",
                     feature = rep(features, each = length(groups)), 
                     group = rep(groups, length(features)), 
                     estimate = NA, se = NA, p = NA)

for (i in seq_along(features)) {
  df <- df_causal %>%
    dplyr::select(status, group1, druguse, all_of(features[i])) %>%
    drop_na()

  t_formula <- as.formula(paste0("status ~ group1 + ", features[i], " + druguse"))
  df_exp <- neImpute(t_formula, family = binomial("logit"), data = df)
  ne_mod <- neModel(status ~ group10 + group11 + druguse,
                   family = binomial("logit"), expData = df_exp, se = "robust")
  summ <- summary(ne_mod)
  
  idx = seq_along(groups) + (i - 1) * length(groups)
  res_nde[idx, "estimate"] <- round(summ$coefficients[2:4, "Estimate"], 2)
  res_nde[idx, "se"] <- round(summ$coefficients[2:4, "Std. Error"], 2)
  res_nde[idx, "p"] <- round(summ$coefficients[2:4, "Pr(>|z|)"], 3)
  
  res_nie[idx, "estimate"] <- round(summ$coefficients[5:7, "Estimate"], 2)
  res_nie[idx, "se"] <- round(summ$coefficients[5:7, "Std. Error"], 2)
  res_nie[idx, "p"] <- round(summ$coefficients[5:7, "Pr(>|z|)"], 3)
}

res <- rbind(res_nde, res_nie)

head(res)
typefeaturegroupestimatesep
1ndeA.muciniphilag2-0.621.370.649
2ndeA.muciniphilag31.570.880.076
3ndeA.muciniphilag43.461.370.012
4ndeB.caccaeg20.901.030.382
5ndeB.caccaeg32.090.950.028
6ndeB.caccaeg43.281.200.006

Combine cytokines and DA species

  • 中介分析使用Natural effects model

    • exposure variables (自变量X): consisting of sexual exposure groups
  • mediators (中介变量M): cytokines & gut microbiota
    • outcome variable (因变量Y): HIV-1 seroconversion status
  • adjusted variable (混淆变量): druguse
# Natural effects model
all_mediators <- c(all_species, "cd14", "cd163")
df <- df_causal %>%
  dplyr::select(status, group1, druguse, all_of(all_mediators))
df[is.na(df)] <- 0

t_formula <- as.formula(paste0("status ~ group1 + ", 
                              paste0(all_mediators, collapse = " + "), 
                              " + druguse"))
df_exp <- neImpute(
  t_formula,
  family = binomial("logit"), 
  nMed = length(all_mediators), 
  data = df)

ne_mod <- neModel(
  status ~ group10 + group11 + druguse,
  family = binomial("logit"), 
  expData = df_exp, 
  se = "robust")

summ <- summary(ne_mod)
df_summ <- data.frame(summ$coefficients)

# Trend test
# set.seed(123)
# trend_nde <- trend_test(beta_hat = summ$coefficients[2:4, "Estimate"],
#                        vcov_hat = ne_mod$vcov[2:4, 2:4],
#                        contrast = contrast_mat,
#                        node = 3, B = 1000)
# set.seed(123)
# trend_nie <- trend_test(beta_hat = summ$coefficients[5:7, "Estimate"],
#                        vcov_hat = ne_mod$vcov[5:7, 5:7],
#                        contrast = contrast_mat,
#                        node = 3, B = 1000)
# 
# ne_trend_test <- base::append(ne_trend_test,
#                              list(all_nde = trend_nde, all_nie = trend_nie))

# Outputs
types <- c("nde", "nie")
groups <- c("g2", "g3", "g4")
res <- data.frame(type = rep(types, each = length(groups)), 
                 group = rep(groups, length(types)), 
                 estimate = NA, se = NA, p = NA,
                 trend_p = NA)
res$estimate <- round(df_summ$Estimate[2:7], 2)
res$se <- round(df_summ$Std..Error[2:7], 2)
res$p <- round(df_summ$Pr...z..[2:7], 3)
res$trend_p[3] <- round(ne_trend_test$all_nde$p_value, 3)
res$trend_p[6] <- round(ne_trend_test$all_nie$p_value, 3)

head(res)
typegroupestimateseptrend_p
1ndeg21.810.640.005NA
2ndeg32.380.610.000NA
3ndeg43.160.680.0000.000
4nieg20.200.170.241NA
5nieg30.290.170.087NA
6nieg40.740.240.0020.001

Additional analysis: treating the exposure as continuous

  • 中介分析使用Natural effects model

    • exposure variables (自变量X): recept_anal
  • mediators (中介变量M): cytokines & gut microbiota
    • outcome variable (因变量Y): HIV-1 seroconversion status
  • adjusted variable (混淆变量): druguse
# Natural effects model
all_mediators <- c(all_species, "cd14", "cd163")
df <- df_causal %>%
  dplyr::select(status, recept_anal, druguse, all_of(all_mediators))
df[is.na(df)] <- 0

t_formula <- as.formula(paste0("status ~ recept_anal + ", 
                              paste0(all_mediators, collapse = " + "), 
                              " + druguse"))
df_exp <- neImpute(t_formula,
                  family = binomial("logit"), nMed = length(all_mediators), data = df)
ne_mod <- neModel(status ~ recept_anal0 + recept_anal1 + druguse,
                 family = binomial("logit"), expData = df_exp, se = "robust")
summ <- summary(ne_mod)
df_summ <- data.frame(summ$coefficients)

df_summ
EstimateStd…Errorz.valuePr…z…
(Intercept)-1.928928730.419607493-4.5969844.286515e-06
recept_anal00.080285330.0409295311.9615504.981487e-02
recept_anal10.008316930.0047855971.7379098.222692e-02
druguseyes1.178525960.4348636542.7101056.726201e-03

Additional analysis: substance usage as the mediator

  • 中介分析使用Natural effects model

    • exposure variables (自变量X): recept_anal

    • mediators (中介变量M): druguse

    • outcome variable (因变量Y): HIV-1 seroconversion status

# Natural effects model
df <- df_causal %>%
  dplyr::select(status, group1, druguse)
df[is.na(df)] <- 0

t_formula <- as.formula(paste0("status ~ group1 + druguse"))
df_exp <- neImpute(t_formula,
                  family = binomial("logit"), data = df)
ne_mod <- neModel(status ~ group10 + group11,
                 family = binomial("logit"), expData = df_exp, se = "robust")
summ <- summary(ne_mod)
df_summ <- data.frame(summ$coefficients)

df_summ
EstimateStd…Errorz.valuePr…z…
(Intercept)-3.013282640.59597082-5.0560914.279374e-07
group10g22.078383970.656684933.1649641.551023e-03
group10g32.715491020.625797994.3392451.429728e-05
group10g43.886784870.706008845.5052923.685567e-08
group11g20.076097050.071852711.0590702.895679e-01
group11g30.180576390.110168341.6390951.011934e-01
group11g40.178175570.124831091.4273331.534839e-01

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1879382.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux基础篇——目录结构

基本介绍 Linux的文件系统是采用级层式的树状目录结构&#xff0c;在此结构中的最上层是根目录"/"&#xff0c;然后在根目录下再创建其他的目录 在Linux中&#xff0c;有一句经典的话&#xff1a;在Linux世界里&#xff0c;一切皆文件 Linux中根目录下的目录 具体的…

新能源行业知识体系-------主目录-----持续更新

本文相当于目录方便快速检索内容&#xff0c;没有实际内容&#xff0c;只做索引 文章目录 一、电力市场概论二、蒙西电网需求侧响应三、蒙西电网市场结算V2.0 一、电力市场概论 是学习清华大学电力市场概论(2024年春)的学习笔记&#xff0c;详细了解电力市场是如何利用经济学知…

远程桌面无法复制粘贴文件到本地怎么办?

远程桌面不能复制粘贴问题 Windows远程桌面为我们提供了随时随地访问文件和数据的便捷途径&#xff0c;大大提升了工作和生活的效率。然而&#xff0c;在使用过程中&#xff0c;我们也可能遇到一些问题。例如&#xff0c;在通过远程桌面传输文件时&#xff0c;常常会出现无法复…

Day7:.翻转字符串里的单词 151 卡码网:55.右旋转字符串

题目 151. 反转字符串中的单词 - 力扣&#xff08;LeetCode&#xff09; class Solution { public:// 移除多余空格void moveSpace(string& s) {// 定义快慢指针int slow 0;int fast 0;// 删除前导空格while (s.size() > 0 && fast < s.size() &&…

第2章-Python编程基础

#本章目标 1&#xff0c;了解什么是计算机程序 2&#xff0c;了解什么是编程语言 3&#xff0c;了解编程语言的分类 4&#xff0c;了解静态语言与脚本语言的区别 5&#xff0c;掌握IPO程序编写方法 6&#xff0c;熟练应用输出函数print与输入函数input 7&#xff0c;掌握Python…

204.贪心算法:分发饼干(力扣)

以下来源于代码随想录 class Solution { public:int findContentChildren(vector<int>& g, vector<int>& s) {// 对孩子的胃口进行排序sort(g.begin(), g.end());// 对饼干的尺寸进行排序sort(s.begin(), s.end());int index s.size() - 1; // 从最大的饼…

MySQL之索引失效的情况

什么情况下索引会失效&#xff1f; 违反最左前缀原则范围查询右边的列不能使用索引不要在索引列上进行运算操作字符串不加单引号导致索引失效以%开头的like模糊查询 什么情况下索引会失效&#xff1f; 示例&#xff0c;有user表如下 CREATE TABLE user (id bigint(20) NOT NU…

大语言模型(LLMs)全面学习指南,初学者入门,一看就懂!

大语言模型&#xff08;LLMs&#xff09;作为人工智能&#xff08;AI&#xff09;领域的一项突破性发展&#xff0c;已经改变了自然语言处理&#xff08;NLP&#xff09;和机器学习&#xff08;ML&#xff09;应用的面貌。这些模型&#xff0c;包括OpenAI的GPT-4o和Google的gem…

docker安装sqlserver2019

1、背景 由于要学习flink cdc&#xff0c;并且数据源是sqlserver&#xff0c;所以这里采用docker安装sqlserver。 2、安装步骤 &#xff08;1&#xff09;建目录 // 创建指定的目录 mkdir sqlserver// 进入该目录 cd sqlserver// 创建/data/mssql目录 mkdir -p /data/mssql…

电子电路学习笔记(3)三极管

部分内容参考链接&#xff1a; 电子电路学习笔记&#xff08;5&#xff09;——三极管_三极管 箭头-CSDN博客 模拟电子技术基础笔记&#xff08;4&#xff09;——晶体三极管_集电结的单向导电性-CSDN博客 硬件基本功-36-三极管Ib电流如何控制Ic电流_哔哩哔哩_bilibili 部分…

力扣最新详解5道题:两数之和三数之和四数之和

目录 一、查找总价格为目标值的两个商品 题目 题解 方法一&#xff1a;暴力枚举 方法二&#xff1a;对撞指针 二、两数之和 题目 题解 方法一&#xff1a;暴力枚举 方法二&#xff1a;哈希表法 三、三数之和 题目 题解 方法一&#xff1a;排序暴力枚举set去重 …

【JVM基础篇】垃圾回收

文章目录 垃圾回收常见内存管理方式手动回收&#xff1a;C内存管理自动回收(GC)&#xff1a;Java内存管理自动、手动回收优缺点 应用场景垃圾回收器需要对哪些部分内存进行回收&#xff1f;不需要垃圾回收器回收需要垃圾回收器回收 方法区的回收代码测试手动调用垃圾回收方法Sy…

二叉树第二期:堆的实现与应用

若对树与二叉树的相关概念&#xff0c;不太熟悉的同学&#xff0c;可移置上一期博客 链接&#xff1a;二叉树第一期&#xff1a;树与二叉树的概念-CSDN博客 本博客目标&#xff1a;对二叉树的顺序结构&#xff0c;进行深入且具体的讲解&#xff0c;同时学习二叉树顺序结构的应用…

Origin科学绘图软件最新版下载安装,Origin强大的科学研究工具

Origin软件&#xff0c;这款软件以其强大的数据分析和图形绘制功能&#xff0c;赢得了广大科研人员的青睐。无论是探索微观世界的化学研究&#xff0c;还是深究宏观现象的物理学分析&#xff0c;亦或是揭示生命奥秘的生物学探索&#xff0c;Origin软件都能为用户提供精准、高效…

Raccon:更好防侧信道攻击的后量子签名方案

1. 引言 安全社区已经开发出了一些出色的加密算法&#xff0c;这些算法非常安全&#xff0c;但最终&#xff0c;所有的数据都会被存储在硅和金属中&#xff0c;而入侵者越来越多地会在那里放置监视器来破解密钥。 破解加密密钥通常涉及暴力破解方法或利用实施过程中的缺陷。然…

linux ls文件排序

linux可以使用ls命令结合一些选项来按照文件大小对文件和目录进行排序。以下是一些常用的方法&#xff1a; 1、这里&#xff0c;-l 选项表示长格式输出&#xff08;包括文件权限、所有者、大小等&#xff09;&#xff0c;-S 选项表示按照文件大小排序&#xff0c;-h 选项表示以…

机器学习Python代码实战(一)线性回归算法

一.简单线性回归算法 简单线性回归算法的函数表达式一般为ykxb&#xff0c;需要拟合的变量是k和b。 1.导入库和数据集 2.读入数据集并以图表形式展示 分别为x轴和y轴设定标签值为area和price,其中读入的数据集csv文件是在项目的根目录下的文件夹dataset里。打印如图示。 至于…

昇思25天学习打卡营第5天|GAN图像生成

文章目录 昇思MindSpore应用实践基于MindSpore的生成对抗网络图像生成1、生成对抗网络简介零和博弈 vs 极大极小博弈GAN的生成对抗损失&#xff1a; 2、基于MindSpore的 Vanilla GAN3、基于MindSpore的手写数字图像生成导入数据数据可视化模型训练 Reference 昇思MindSpore应用…

【单片机毕业设计选题24034】-基于STM32的手机智能充电系统

系统功能: 系统可以设置充电时长&#xff0c;启动充电后按设置的充电时长充电&#xff0c;充电时间到后自动 停止充电&#xff0c;中途检测到温度过高也会结束充电并开启风扇和蜂鸣器报警。 系统上电后&#xff0c;OLED显示“欢迎使用智能充电系统请稍后”&#xff0c;两秒钟…

《强化学习的数学原理》(2024春)_西湖大学赵世钰 Ch8 值函数拟合 【基于近似函数的 TD 算法:Sarsa、Q-leaning、DQN】

PPT 截取有用信息。 课程网站做习题。总体 MOOC 过一遍 1、学堂在线 视频 习题 2、相应章节 过电子书 复习 【下载&#xff1a; 本章 PDF GitHub 页面链接】 3、 MOOC 习题 跳过的 PDF 内容 学堂在线 课程页面链接 中国大学MOOC 课程页面链接 B 站 视频链接 PPT和书籍下载网址…