53、基于竞争层的竞争学习(matlab)

news2025/1/13 17:31:53

1、基于竞争层的竞争学习简介及原理

竞争学习是一种无监督学习方法,其中的竞争层神经元之间互相竞争以学习输入模式的表示。竞争学习的一个经典模型是竞争神经网络(Competitive Neural Network,简称CNN),其核心部分是竞争层,包含多个竞争神经元,它们通过竞争机制来学习输入数据的特征。

竞争学习的原理如下:

  1. 模型初始化:竞争层中的每个竞争神经元具有随机初始化的权重向量,用于与输入数据进行比较。
  2. 竞争机制:当接收到输入数据时,竞争神经元之间进行竞争,即各自计算与输入数据的相似度,并选择最能代表输入数据的神经元作为胜者。
  3. 胜者更新:胜者神经元会调整自己的权重向量,使其更好地匹配输入数据,同时关闭其他神经元的更新过程,以保证只有一个胜者。
  4. 学习规则:竞争学习过程中的权重更新规则通常遵循希伯来学习规则(Hebbian Learning Rule),即“同胞竞争,异胞挤压”,即强化与输入模式相符的权重,抑制与输入模式不符的权重。
  5. 学习迭代:重复上述竞争和胜者更新过程,直到模型收敛或达到设定的迭代次数。

竞争学习在模式分类、特征提取等领域有着广泛的应用,能够有效地从输入数据中提取关键特征,并生成对应的内部表示。竞争学习的训练过程是无监督的,只依赖于输入数据的统计特性,具有较强的自组织和特征抽取能力。

2、基于竞争层的竞争学习说明

1)说明

竞争层中的神经元可通过学习来表示输入向量在输入空间中出现的不同区域

2)解决案例

P 是一组随机生成但聚类的测试数据点。竞争网络将用于将这些点分成若干自然类。

3、数据集

数据集生成代码

bounds = [0 1; 0 1];   % 聚类中心在这些范围内
clusters = 8;          % 簇数量
points = 10;           % 每个簇中的点数
std_dev = 0.05;        % 每个聚类的标准差
x = nngenc(bounds,clusters,points,std_dev);

数据集显示代码

% 绘图
figure(1)
plot(x(1,:),x(2,:),'+r');
title('Input Vectors');
xlabel('x(1)');
ylabel('x(2)');

视图效果

4、 COMPETLAYER 接受两个参量,即神经元数量和学习率。

说明

配置网络输入(通常由 TRAIN 自动完成),并绘制初始权重向量以查看其分类尝试过程。

代码

figure(2)
net = competlayer(8,.1);
net = configure(net,x);
w = net.IW{1};
plot(x(1,:),x(2,:),'+r');
hold on;
circles = plot(w(:,1),w(:,2),'ob');

视图效果

5、训练竞争层

在训练竞争层网络时,有一些注意事项需要注意:

  1. 数据预处理:在输入数据集训练之前,需要对数据进行预处理,如归一化处理,以确保不同特征之间的数值范围相同,避免某些特征对竞争过程产生过大影响。

  2. 初始权重选择:竞争层的初始权重设置可能会影响网络的收敛速度和收敛质量,因此需要仔细选择初始权重。常见的初始化方法包括随机初始化和基于数据的初始化方法。

  3. 学习率和邻域函数的选择:学习率和邻域函数的选择对竞争层的训练过程至关重要。学习率的选择会影响权重调整的速度,而邻域函数的选择则会影响胜者神经元周围神经元的权重调整程度。

  4. 迭代次数:需要根据数据集的特点和网络的复杂度来确定训练的迭代次数,以确保网络能够充分学习数据集的特征。

  5. 模型评估:在训练过程中,需要对模型进行评估,监测模型的收敛情况,以及绘制训练过程中的损失函数曲线等,以便及时调整网络参数和模型结构。

  6. 参数调优:在网络训练过程中,可能需要调整学习率、邻域函数的衰减率及初始值等参数,以达到更好的训练效果。

  7. 可视化分析:最后,可以通过可视化分析来观察竞争层的训练效果,例如可视化竞争层的权重矩阵,观察不同输入数据在竞争层的分布情况,以验证模型的有效性。

在训练竞争层网络时,注意以上事项可以帮助提高模型的训练效果,加快网络的收敛速度,并确保竞争层能够充分学习输入数据的特征。

代码

net.trainParam.epochs = 7;
net = train(net,x);

视图效果

 

6、 图上绘制更新后的层权重

代码

w = net.IW{1};
delete(circles);
plot(w(:,1),w(:,2),'ob');

视图效果

7、 使用竞争层作为分类器

1)说明

使用竞争层作为分类器,其中每个神经元都对应于一个不同的类别。将一个输入向量 X1 定义为 [0; 0.2]
输出 Y 指示哪个神经元正在响应,从而指示输入属于哪个类。

代码

x1 = [0; 0.2];
y = net(x1)

y =

     1
     0
     0
     0
     0
     0
     0
     0

8、总结

在MATLAB中实现基于竞争层的竞争学习可以利用自组织特征映射(Self-Organizing Map,简称SOM)算法。SOM是竞争学习的一种形式,其将输入数据在一个高维网格网络中进行竞争学习,从而实现特征提取和数据可视化。

以下是使用MATLAB实现基于竞争层的竞争学习的一般步骤总结:

  1. 准备数据:准备输入数据集,确保数据已经进行归一化处理。
  2. 初始化权重:初始化竞争层(SOM)网络的权重矩阵,每个神经元对应一个权重向量,与输入数据的维度相同。
  3. 训练模型:迭代输入数据集,对每个输入数据计算与各个神经元的距离,并选择最近的神经元作为胜者,根据胜者神经元和邻域函数更新权重矩阵。
  4. 学习率调整:随着模型训练的进行,逐渐减小学习率和邻域函数的大小,以便在后期更加精细地调整权重。
  5. 可视化结果:可视化训练后的竞争层权重矩阵,观察不同输入数据在竞争层上的分布情况。

在MATLAB中,可以利用自带的SOM工具箱或者编写自定义代码的方式实现基于竞争层的竞争学习。通过调整模型参数、学习率和迭代次数,可以对模型进行优化和调整,以获得更好的特征提取效果。此外,可以通过可视化竞争层学习后的特征表示,进一步理解模型学习到的数据结构和特征。

9、源代码

代码

%% 基于竞争层的竞争学习
%竞争层中的神经元可通过学习来表示输入向量在输入空间中出现的不同区域
%P 是一组随机生成但聚类的测试数据点。竞争网络将用于将这些点分成若干自然类。
%% 数据集
bounds = [0 1; 0 1];   % 聚类中心在这些范围内
clusters = 8;          % 簇数量
points = 10;           % 每个簇中的点数
std_dev = 0.05;        % 每个聚类的标准差
x = nngenc(bounds,clusters,points,std_dev);

% 绘图
figure(1)
plot(x(1,:),x(2,:),'+r');
title('Input Vectors');
xlabel('x(1)');
ylabel('x(2)');
%COMPETLAYER 接受两个参量,即神经元数量和学习率。
%配置网络输入(通常由 TRAIN 自动完成),并绘制初始权重向量以查看其分类尝试过程。
figure(2)
net = competlayer(8,.1);
net = configure(net,x);
w = net.IW{1};
plot(x(1,:),x(2,:),'+r');
hold on;
circles = plot(w(:,1),w(:,2),'ob');
%训练竞争层
net.trainParam.epochs = 7;
net = train(net,x);
%图上绘制更新后的层权重
w = net.IW{1};
delete(circles);
plot(w(:,1),w(:,2),'ob');
%使用竞争层作为分类器
%使用竞争层作为分类器,其中每个神经元都对应于一个不同的类别。将一个输入向量 X1 定义为 [0; 0.2]
%输出 Y 指示哪个神经元正在响应,从而指示输入属于哪个类。
x1 = [0; 0.2];
y = net(x1)



工程文件

https://download.csdn.net/download/XU157303764/89498417

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1879073.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PingCastle 3.2.0.1 - Active Directory 安全检测和评估

PingCastle 3.2.0.1 - Active Directory 安全检测和评估 活动目录域安全分析工具 请访问原文链接:https://sysin.org/blog/pingcastle/,查看最新版。原创作品,转载请保留出处。 作者主页:sysin.org 在 20% 的时间内获得 80% 的…

Linux多进程和多线程(一)-进程的概念和创建

进程 进程的概念进程的特点如下进程和程序的区别LINUX进程管理 getpid()getppid() 进程的地址空间虚拟地址和物理地址进程状态管理进程相关命令 ps toppstreekill 进程的创建 并发和并行fork() 父子进程执行不同的任务创建多个进程 进程的退出 exit()和_exit() exit()函数让当…

ros中teleop_twist_keyboard安装使用

目录 1.安装 2.使用 3.说明 1.安装 sudo apt-get install ros-noetic-teleop-twist-keyboard 其中noetic替换成你自己的ros版本 2.使用 roscore #启动roscore rosrun teleop_twist_keyboard teleop_twist_keyboard.py …

Python学习笔记(一):基础特性

python英文官方文档:https://docs.python.org/3.8/tutorial/index.html 比较不错的python中文文档:https://www.runoob.com/python3/python3-tutorial.html 1. 写在前面 这几周从实践角度又学习了一遍python,温故而知新,还是有蛮多心得的, 周末再看之前记的python笔记,…

vue3绘制广东深圳地图使用echarts

<!-- 饼图 --> <template><el-card><template #header> 地级市分类图 </template><div :id"id" :class"className" :style"{ height, width }"></div></el-card> </template><script …

【算法专题--栈】用栈实现队列 -- 高频面试题(图文详解,小白一看就懂!!)

目录 一、前言 二、题目描述 三、解题方法 ⭐双栈 模拟 队列 &#x1f95d;栈 和 队列 的特性 &#x1f34d;具体思路 &#x1f34d;案例图解 四、总结与提炼 五、共勉 一、前言 用栈实现队列 这道题&#xff0c;可以说是--栈专题--&#xff0c;最经典的一道题&…

昇思MindSpore学习入门-函数式自动微分

函数式自动微分 神经网络的训练主要使用反向传播算法&#xff0c;模型预测值&#xff08;logits&#xff09;与正确标签&#xff08;label&#xff09;送入损失函数&#xff08;loss function&#xff09;获得loss&#xff0c;然后进行反向传播计算&#xff0c;求得梯度&#…

为何同一PDF文档用不同软件打印效果不同?

通过扫描仪生成的同一PDF文档&#xff0c;同样的设置&#xff0c;为什么别的电脑打出来是白底我的打出来有灰色格子背景&#xff1f;这种情况通常是由于PDF阅读软件的不同造成的差异。 ### 可能的原因和解决方法&#xff1a; 1. **PDF阅读软件的不同**&#xff1a; - **解决方…

Java高级重点知识点-17-异常

文章目录 异常异常处理自定义异常 异常 指的是程序在执行过程中&#xff0c;出现的非正常的情况&#xff0c;最终会导致JVM的非正常停止。Java处 理异常的方式是中断处理。 异常体系 异常的根类是 java.lang.Throwable&#xff0c;&#xff0c;其下有两个子类&#xff1a;ja…

Java 面试指南合集

JVM 篇 线程篇 springBoot篇 SpringCloud篇 待更新 黑夜无论怎样悠长&#xff0c;白昼总会到来。 此文会一直更新哈 如果你希望成功&#xff0c;当以恒心为良友&#xff0c;以经验为参谋&#xff0c;以当心为兄弟&#xff0c;以希望为哨兵。

Java单体架构项目_云霄外卖-特殊点

项目介绍&#xff1a; 定位&#xff1a; 专门为餐饮企业&#xff08;餐厅、饭店&#xff09;定制的一款软件商品 分为&#xff1a; 管理端&#xff1a;外卖商家使用 用户端&#xff08;微信小程序&#xff09;&#xff1a;点餐用户使用。 功能架构&#xff1a; &#xff08…

改进经验模态分解方法-通过迭代方式(IMF振幅加权频率,Python)

一种新颖的改进经验模态分解方法-通过迭代方式&#xff08;IMF振幅加权频率&#xff09;有效缓解了模态混叠缺陷&#xff0c;以后慢慢讲&#xff0c;先占坑。 import numpy as np import matplotlib.pyplot as plt import os import seaborn as sns from scipy import stats i…

Pikachu 不安全的文件下载(Unsafe file download)概述 附漏洞利用案例

目录 获取下载链接 修改链接 重新构造链接 拓展 不安全的文件下载概述 文件下载功能在很多web系统上都会出现&#xff0c;一般我们当点击下载链接&#xff0c;便会向后台发送一个下载请求&#xff0c;一般这个请求会包含一个需要下载的文件名称&#xff0c;后台在收到请求…

回溯法基本思想-01背包、N皇后回溯法图解

基本思想&#xff1a; ​ 回溯法是一种系统地搜索问题解空间的算法&#xff0c;常用于解决组合优化和约束满足问题。其核心思想是利用深度优先搜索逐步构建可能的解&#xff0c;同时在搜索过程中进行剪枝操作&#xff0c;以排除那些无法满足问题约束或不能产生最优解的分支&am…

第十一节:学习通过动态调用application.properties参数配置实体类(自学Spring boot 3.x的第二天)

大家好&#xff0c;我是网创有方。这节实现的效果是通过代码灵活地调用application.properties实现配置类参数赋值。 第一步&#xff1a;编写配置类 package cn.wcyf.wcai.config;import org.springframework.beans.factory.annotation.Value; import org.springframework.boo…

【后端面试题】【中间件】【NoSQL】ElasticSearch 节点角色、写入数据过程、Translog和索引与分片

中间件的常考方向&#xff1a; 中间件如何做到高可用和高性能的&#xff1f; 你在实践中怎么做的高可用和高性能的&#xff1f; Elasticsearch节点角色 Elasticsearch的节点可以分为很多种角色&#xff0c;并且一个节点可以扮演多种角色&#xff0c;下面列举几种主要的&…

python第一课 环境准备篇

一、所需工具 电脑&#xff1a;windows或mac 二、安装教程 1、访问 Python 的官方网站&#xff08;https://www.python.org/ &#xff09;&#xff0c;找到 DownLoad &#xff0c;无法访问百度网盘下载 链接&#xff1a;百度网盘 请输入提取码 提取码&#xff1a;8cho 2、选…

用Java操作MySQL数据中的日期类型的数据存取问题分析及其解决办法

目录 一、问题说明二、问题分析三、解决办法1.Java日期向数据存方法一&#xff1a;方法二&#xff1a; 2.从数据库中取日期最后 在Java中向MySQL数据库存取日期类型的数据时&#xff0c;可能会遇到一些常见问题&#xff0c;以下是一些关键点和解决办法&#xff1a; 一、问题说…

基于bootstrap的12种登录注册页面模板

基于bootstrap的12种登录注册页面模板&#xff0c;分三种类型&#xff0c;默认简单的登录和注册&#xff0c;带背景图片的登录和注册&#xff0c;支持弹窗的登录和注册页面html下载。 微信扫码下载

Spring学习01-[Spring实现IOC的几种方式]

Spring实现IOC的几种方式 基于xml实现Spring的IOC基于注解实现Spring的IOC基于JavaConfig实现的Spring的IOC基于SpringBoot实现Spring的IOC 基于xml实现Spring的IOC 引入spring核心依赖 <!--spring核心容器--><dependency><groupId>org.springframework<…