MLP多层感知机理解

news2025/1/15 20:52:08

目录

.1简介

.2例子

2.1模型

2.2 实例

2.2.1 问题描述

2.2.2 数学过程

.3 代码

3.1 问题描述

3.2 代码

references:


.1简介

多层感知机是全连接的

可以把低维的向量映射到高维度

MLP整个模型就是这样子的,上面说的这个三层的MLP用公式总结起来就是,函数G是softmax

输入层没什么好说,你输入什么就是什么,比如输入是一个n维向量,就有n个神经元。(有时候也会加上一个偏置)

隐藏层的神经元怎么得来?首先它与输入层是全连接的,假设输入层用向量X表示,则隐藏层的输出就是

f(W1X+b1),W1是权重(也叫连接系数),b1是偏置,函数f 可以是常用的sigmoid函数或者tanh函数:

 因此,MLP所有的参数就是各个层之间的连接权重以及偏置,包括W1、b1、W2、b2。对于一个具体的问题,怎么确定这些参数?求解最佳的参数是一个最优化问题,解决最优化问题,最简单的就是梯度下降法了(SGD):首先随机初始化所有参数,然后迭代地训练,不断地计算梯度和更新参数,直到满足某个条件为止(比如误差足够小、迭代次数足够多时)。这个过程涉及到代价函数、规则化(Regularization)、学习速率(learning rate)、梯度计算等
 

.2例子

2.1模型

表示了含有一个隐藏层的多层感知器。注意,所有的连接都有权重,但在图中只标记了三个权重(w0,,w1,w2)。

输入层:输入层有三个节点。偏置节点值为 1。其他两个节点从 X1 和 X2 取外部输入(皆为根据输入数据集取的数字值)。和上文讨论的一样,在输入层不进行任何计算,所以输入层节点的输出是 1、X1 和 X2 三个值被传入隐藏层。

隐藏层:隐藏层也有三个节点,偏置节点输出为 1。隐藏层其他两个节点的输出取决于输入层的输出(1,X1,X2)以及连接(边界)所附的权重。

输出层:输出层有两个节点,从隐藏层接收输入,并执行类似高亮出的隐藏层的计算。这些作为计算结果的计算值(Y1 和 Y2)就是多层感知器的输出。

给出一系列特征 X = (x1, x2, ...) 和目标 Y,一个多层感知器可以以分类或者回归为目的,学习到特征和目标之间的关系。

2.2 实例

2.2.1 问题描述

假设我们有这样一个学生分数数据集:

两个输入栏表示了学生学习的时间和期中考试的分数。最终结果栏可以有两种值,1 或者 0,来表示学生是否通过的期末考试。

例如,第一行数据如果学生学习了 35 个小时并在期中获得了 67 分,就会通过期末考试。

现在假设想预测一个学习了 25 个小时并在期中考试中获得 70 分的学生是否能够通过期末考试。

多层感知器(修改自 Sebastian Raschka 漂亮的反向传播算法图解:跳转中...

两个节点分别接收「学习小时数」和「期中考试分数」。感知器也有一个包含两个节点的隐藏层(除了偏置节点以外)。输出层也有两个节点——上面一个节点输出「通过」的概率,下面一个节点输出「不通过」的概率。

在分类任务中,我们通常在感知器的输出层中使用 Softmax 函数作为激活函数,以保证输出的是概率并且相加等于 1。Softmax 函数接收一个随机实值的分数向量,转化成多个介于 0 和 1 之间、并且总和为 1 的多个向量值。

在这个例子中:

概率(Pass)+概率(Fail)=1

2.2.2 数学过程

  • 网络的输入=[35, 67]

  • 期望的网络输出(目标)=[1, 0]

第一步:前向传播

假设从输入连接到这些节点的权重分别为 w1、w2 和 w3(如图所示)。

涉及到的节点的输出 V 可以按如下方式计算(*f* 是类似 Sigmoid 的激活函数):

V = f(1*w1 + 35*w2 + 67*w3)

假设输出层两个节点的输出概率分别为 0.4 和 0.6(因为权重随机,输出也会随机)。我们可以看到计算后的概率(0.4 和 0.6)距离期望概率非常远(1 和 0),所以图 5 中的网络被视为有「错误输出」。

第二步:反向传播和权重更新

我们计算输出节点的总误差,并将这些误差用反向传播算法传播回网络,以计算梯度。接下来,我们使用类似梯度下降之类的算法来「调整」网络中的所有权重,目的是减少输出层的误差。

假设附给节点的新权重分别是 w4,w5 和 w6(在反向传播和权重调整之后)。

比,输出节点的误差已经减少到了 [0.2, -0.2]。这意味着我们的网络已经学习了如何正确对第一个训练样本进行分类。

.3 代码

3.1 问题描述

Adam Harley 创造了一个多层感知器的 3D 可视化(http://scs.ryerson.ca/~aharley/vis/fc/)

此网络从一个 28 x 28 的手写数字图像接受 784 个数字像素值作为输入(在输入层有对应的 784 个节点)。网络的第一个隐藏层有 300 个节点,第二个隐藏层有 100 个节点,输出层有 10 个节点(对应 10 个数字)。

虽然这个网络跟我们刚才讨论的相比大了很多(使用了更多的隐藏层和节点),所有前向传播和反向传播步骤的计算(对于每个节点而言)方式都是一样的。

下图显示了输入数字为「5」的时候的网络

输出值比其它节点高的节点,用更亮的颜色表示。在输入层,更亮的节点代表接受的数字像素值更高。注意,在输出层,亮色的节点是如何代表数字 5 的(代表输出概率为 1,其他 9 个节点的输出概率为 0)。这意味着多层感知器对输入数字进行了正确的分类。我非常推荐对这个可视化进行探究,观察不同节点之间的联系。

3.2 代码

网络结构

# 建立一个四层感知机网络
class MLP(torch.nn.Module):   # 继承 torch 的 Module
    def __init__(self):
        super(MLP,self).__init__()    # 
        # 初始化三层神经网络 两个全连接的隐藏层,一个输出层
        self.fc1 = torch.nn.Linear(784,512)  # 第一个隐含层  
        self.fc2 = torch.nn.Linear(512,128)  # 第二个隐含层
        self.fc3 = torch.nn.Linear(128,10)   # 输出层
        
    def forward(self,din):
        # 前向传播, 输入值:din, 返回值 dout
        din = din.view(-1,28*28)       # 将一个多行的Tensor,拼接成一行
        dout = F.relu(self.fc1(din))   # 使用 relu 激活函数
        dout = F.relu(self.fc2(dout))
        dout = F.softmax(self.fc3(dout), dim=1)  # 输出层使用 softmax 激活函数
        # 10个数字实际上是10个类别,输出是概率分布,最后选取概率最大的作为预测值输出
        return dout

加载数据集

# 定义全局变量
n_epochs = 10     # epoch 的数目
batch_size = 20  # 决定每次读取多少图片

# 定义训练集个测试集,如果找不到数据,就下载
train_data = datasets.MNIST(root = './data', train = True, download = True, transform = transforms.ToTensor())
test_data = datasets.MNIST(root = './data', train = True, download = True, transform = transforms.ToTensor())
# 创建加载器
train_loader = torch.utils.data.DataLoader(train_data, batch_size = batch_size, num_workers = 0)
test_loader = torch.utils.data.DataLoader(test_data, batch_size = batch_size, num_workers = 0)

这里参数很多,所以就有很多需要注意的地方了:

root 参数的文件夹即使不存在也没关系,会自动创建

transform 参数,如果不知道要对数据集进行什么变化,这里可自动忽略

batch_size 参数的大小决定了一次训练多少数据,相当于定义了每个 epoch 中反向传播的次数

num_workers 参数默认是 0,即不并行处理数据;我这里设置大于 0 的时候,总是报错,建议设成默认值
网络测试

# 在数据集上测试神经网络
def test():
    correct = 0
    total = 0
    with torch.no_grad():  # 训练集中不需要反向传播
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('Accuracy of the network on the test images: %d %%' % (
        100 * correct / total))
    return 100.0 * correct / total

代码首先设置 torch.no_grad(),定义后面的代码不需要计算梯度,能够节省一些内存空间。然后,对测试集中的每个 batch 进行测试,统计总数和准确数,最后计算准确率并输出。

通常是选择边训练边测试的,这里先就按步骤一步一步来做。

有的测试代码前面要加上 model.eval(),表示这是训练状态。但这里不需要,如果没有 Batch Normalization 和 Dropout 方法,加和不加的效果是一样的。
完整代码

'''
系统环境: Windows10
Python版本: 3.7
PyTorch版本: 1.1.0
cuda: no
'''
import torch
import torch.nn.functional as F   # 激励函数的库
from torchvision import datasets
import torchvision.transforms as transforms
import numpy as np

# 定义全局变量
n_epochs = 10     # epoch 的数目
batch_size = 20  # 决定每次读取多少图片

# 定义训练集个测试集,如果找不到数据,就下载
train_data = datasets.MNIST(root = './data', train = True, download = True, transform = transforms.ToTensor())
test_data = datasets.MNIST(root = './data', train = True, download = True, transform = transforms.ToTensor())
# 创建加载器
train_loader = torch.utils.data.DataLoader(train_data, batch_size = batch_size, num_workers = 0)
test_loader = torch.utils.data.DataLoader(test_data, batch_size = batch_size, num_workers = 0)


# 建立一个四层感知机网络
class MLP(torch.nn.Module):   # 继承 torch 的 Module
    def __init__(self):
        super(MLP,self).__init__()    # 
        # 初始化三层神经网络 两个全连接的隐藏层,一个输出层
        self.fc1 = torch.nn.Linear(784,512)  # 第一个隐含层  
        self.fc2 = torch.nn.Linear(512,128)  # 第二个隐含层
        self.fc3 = torch.nn.Linear(128,10)   # 输出层
        
    def forward(self,din):
        # 前向传播, 输入值:din, 返回值 dout
        din = din.view(-1,28*28)       # 将一个多行的Tensor,拼接成一行
        dout = F.relu(self.fc1(din))   # 使用 relu 激活函数
        dout = F.relu(self.fc2(dout))
        dout = F.softmax(self.fc3(dout), dim=1)  # 输出层使用 softmax 激活函数
        # 10个数字实际上是10个类别,输出是概率分布,最后选取概率最大的作为预测值输出
        return dout

# 训练神经网络
def train():
    #定义损失函数和优化器
    lossfunc = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(params = model.parameters(), lr = 0.01)
    # 开始训练
    for epoch in range(n_epochs):
        train_loss = 0.0
        for data,target in train_loader:
            optimizer.zero_grad()   # 清空上一步的残余更新参数值
            output = model(data)    # 得到预测值
            loss = lossfunc(output,target)  # 计算两者的误差
            loss.backward()         # 误差反向传播, 计算参数更新值
            optimizer.step()        # 将参数更新值施加到 net 的 parameters 上
            train_loss += loss.item()*data.size(0)
        train_loss = train_loss / len(train_loader.dataset)
        print('Epoch:  {}  \tTraining Loss: {:.6f}'.format(epoch + 1, train_loss))
        # 每遍历一遍数据集,测试一下准确率
        test()

# 在数据集上测试神经网络
def test():
    correct = 0
    total = 0
    with torch.no_grad():  # 训练集中不需要反向传播
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('Accuracy of the network on the test images: %d %%' % (
        100 * correct / total))
    return 100.0 * correct / total

# 声明感知器网络
model = MLP()

if __name__ == '__main__':
    train()

references:

跳转中...

神经网络快速入门:什么是多层感知器和反向传播? - 知乎

使用 PyTorch 实现 MLP 并在 MNIST 数据集上验证_rocketeerLi的博客-CSDN博客_mlp pytorch

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/187732.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C 语言零基础入门教程(二十)

C 预处理器 C 预处理器不是编译器的组成部分,但是它是编译过程中一个单独的步骤。简言之,C 预处理器只不过是一个文本替换工具而已,它们会指示编译器在实际编译之前完成所需的预处理。我们将把 C 预处理器(C Preprocessor&#x…

练手好福利!20个Python实战项目含源代码【2023最新】

高效学习源代码的步骤:1.运行程序,观察表现2.运行源码,断点调试,从头跟一边源码的执行流程,注意函数堆栈3.画类图、流程图,先把遇到的重要类记录下来,表明各个类的关系4.记录问题,把…

Unity XR

一、几个Unity XR Interaction Toolkit学习地址 1.B站视频 https://www.bilibili.com/video/BV11q4y1b74z/?spm_id_from333.999.0.0&vd_source8125d294022d2e63a58dfd228a7fcf63 https://www.bilibili.com/video/BV13b4y177J4/?spm_id_from333.999.0.0&vd_source8…

【对象的比较】java代码实现,详解对象的比较,Comparable接口和Comparator比较器

前言: 大家好,我是良辰丫,💞💞💞今天的我们要学习的知识点是java对象的比较,不是大家现实生活中对象的比较,是java中new一个对象的那个对象,对象的比较到底是什么意思呢&…

24.网络编程(二)

目录 三.TCP通信 3.1 TCP协议特点 3.2 TCP协议通信场景 3.3 TCP通信模型演示 3.4 Socket 3.5 ServerSocket 3.6 注意事项 3.7 案例 3.7.1 TCP通信—单发单收 3.7.2 TCP通信—多发多收 3.7.3 TCP通信—同时接收多个客户端的消息。 3.7.4 TCP通信—使用线程池优化&am…

工业相机和镜头

工业相机和镜头镜头型号数据电源接口定焦镜头的调焦景深景深大小光圈相机、镜头选取参考镜头型号、数据电源接口、定焦镜头的调焦、景深、景深大小、光圈、相机、镜头选取 镜头型号 C,CS系列:相机镜头的C、CS接口非常相似,它们的接口直径、螺…

检索业务:基本数据渲染和排错

采用标签显示商品的数据 <div class"rig_tab"><div th:each"product:${result.getProducts()}"><div class"ico"><i class"iconfont icon-weiguanzhu"></i><a href"/static/search/#">…

5、数据的重构

目录 一、为什么进行数据重构 二、如何进行数据重构 一、为什么进行数据重构 进行数据分析时&#xff0c;有可能会发现数据的结构并不适合直接进行数据分析操作&#xff0c;如下面数据&#xff0c;但通过复制-粘贴-转置等方法操作又太繁琐&#xff0c;数据量小还行&#xff…

C++ 图进阶系列之 kruskal 和 Prim 算法_图向最小生成树的华丽转身

1. 前言 树和图形状相似&#xff0c;也有差异性。树中添加一条或多条边&#xff0c;可成图。图中减小一条或多条边&#xff0c;可成树。形态的变化由数据之间的逻辑关系决定。 图用来描述数据之间多对多关系。树用来描述数据之间一对多关系。 思考如下问题&#xff1f; 如果…

esp32 烧录协议

esp32的rom固化了出场固件。进入烧录模式后&#xff0c;esp32串口输出&#xff1a;给esp32烧录固件的时候&#xff0c;需要和rom的bootloder进行通讯。通讯时&#xff0c;使用 SLIP 数据包帧进行双向数据传输。每个 SLIP 数据包都以 0xC0 开始和结束。 在数据包中&#xff0c;所…

9、Servlet——Request对象

目录 一、get请求和post请求的区别 二、Request对象的应用 1、request主要方法 2、request获取数据 3、设置请求的编码格式 三、解决get请求收参乱码问题 四、解决post请求中文乱码问题 一、get请求和post请求的区别 在Servlet中用来处理客户端请求需要用doGet()方法或…

openGauss数据库源码解析系列文章——备份恢复机制:openGauss全量备份技术

目录 10.1 openGauss全量备份技术 10.1.1 gs_basebackup备份工具 10.1.2 gs_basebackup备份交互流程 本文主要介绍openGauss的备份恢复原理和技术。备份恢复是数据库日常维护的一个例行活动&#xff0c;通过把数据库数据备份到另外一个地方&#xff0c;可以抵御介质类的损…

数据结构与算法-稀疏数组

Java高级系列文章前言 本文章涉及到数据结构与算法的知识&#xff0c;该知识属于Java高级阶段&#xff0c;通常为学习的二阶段&#xff0c;本系列文章涉及到的内容如下&#xff08;橙色框选内容&#xff09;&#xff1a; 本文章核心是教学视频&#xff0c;所以属于个人笔记&a…

深度卷积对抗神经网络 基础 第六部分 缺点和偏见 GANs Disadvantages and Bias

深度卷积对抗神经网络 基础 第六部分 缺点和偏见 GANs Disadvantages and Bias GANs 综合评估 生成对抗网络&#xff08;英语&#xff1a;Generative Adversarial Network&#xff0c;简称GAN&#xff09;是非监督式学习的一种方法&#xff0c;透过两个神经网络相互博弈的方式…

实体对齐(三):RNM

一.摘要 实体对齐旨在将来自不同知识图&#xff08;KG&#xff09;的具有相同含义的实体联系起来&#xff0c;这是知识融合的重要步骤。 现有研究侧重于通过利用知识图谱的结构信息学习实体嵌入来进行实体对齐。这些方法可以聚合来自相邻节点的信息&#xff0c;但也可能带来来…

从软件开发角度看待PCI和PCIe

从软件开发角度看待PCI和PCIe 文章目录从软件开发角度看待PCI和PCIe参考资料&#xff1a;一、 最容易访问的设备是什么二、 地址空间的概念三、 理解PCI和PCIE的关键3.1 地址空间转换3.2 PCI接口速览3.3 PCIe接口速览四、 访问PCI/PCIe设备的流程4.1 PCI/PCIe设备的配置信息4.2…

特斯拉2022全年财报摘要

重点一览一、盈利方面 2022全年营业利润率为16.8%&#xff0c;其中第四季度为16.0% 2022全年GAAP营业利润为137亿美元&#xff0c;其中第四季度为39亿美元 2022全年GAAP净利润为126亿美元&#xff0c;其中第四季度为37亿美元 2022全年非GAAP净利润为141亿美元&#xff0c;其中…

MySQL中的多表联合查询

目录 一.介绍 数据准备 交叉连接查询 内连接查询 外连接 子查询 特点 子查询关键字 all关键字 any关键字和some关键字 in关键字 exists关键字 自关联查询 总结 一.介绍 多表查询就是同时查询两个或两个以上的表&#xff0c;因为有的时候用户在查看数据的时候,需要…

四足机器人发展史及机器人盘点

四足机器人发展史及机器人盘点 本文翻译整理自文章 四足行走机器人发展综述 20世纪初前后 1870 CHebyshev(沙俄)发明了第一个行走机构, 将旋转运动转换为匀速平动运动. - 由于连接机构形似希腊字母λ, 该连杆命名为λ机构. - 可在平面运动, 没有独立的腿部运动 - Rygg(美国…

windows下nodejs下载及环境变量配置,运行vue项目

文章目录1.下载安装node.js2.环境变量配置&#xff08;重点&#xff09;3.切换镜像源切换yarn作为主力命令1.下载安装node.js 1.https://registry.npmmirror.com/binary.html 搜索node&#xff0c;下载对应的版本&#xff0c;安装即可。一路next&#xff0c;路径选择自己想放置…