轻量级模型,重量级性能,TinyLlama、LiteLlama小模型火起来了

news2024/11/24 12:31:56

小身板,大能量。

当大家都在研究大模型(LLM)参数规模达到百亿甚至千亿级别的同时,小巧且兼具高性能的小模型开始受到研究者的关注。

小模型在边缘设备上有着广泛的应用,如智能手机、物联网设备和嵌入式系统,这些边缘设备通常具有有限的计算能力和存储空间,它们无法有效地运行大型语言模型。因此,深入探究小型模型显得尤为重要。

接下来我们要介绍的这两项研究,可能满足你对小模型的需求。

TinyLlama-1.1B

来自新加坡科技设计大学(SUTD)的研究者近日推出了 TinyLlama,该语言模型的参数量为 11 亿,在大约 3 万亿个 token 上预训练而成。

图片

TinyLlama 以 Llama 2 架构和分词器(tokenizer)为基础,这意味着 TinyLlama 可以在许多基于 Llama 的开源项目中即插即用。此外,TinyLlama 只有 11 亿的参数,体积小巧,适用于需要限制计算和内存占用的多种应用。

该研究表示仅需 16 块 A100-40G 的 GPU,便可在 90 天内完成 TinyLlama 的训练。

图片

该项目从上线开始,持续受到关注,目前星标量达到 4.7K。

图片

TinyLlama 模型架构详细信息如下所示:

图片

训练细节如下:

图片

研究者表示,这项研究旨在挖掘使用较大数据集训练较小模型的潜力。他们重点探究在用远大于扩展定律(scaling law)建议的 token 数量进行训练时,较小模型的行为表现。

具体来说,该研究使用大约 3 万亿个 token 训练具有 1.1B 个参数的 Transformer (仅解码器)模型。据了解,这是第一次尝试使用如此大量的数据来训练具有 1B 参数的模型。

尽管规模相对较小,但 TinyLlama 在一系列下游任务中表现相当出色,它的性能显著优于同等大小的现有开源语言模型。具体来说,TinyLlama 在各种下游任务中都超越了 OPT-1.3B 和 Pythia1.4B 。

此外,TinyLlama 还用到了各种优化方法,如 flash attention 2、FSDP( Fully Sharded Data Parallel )、 xFormers 等。

在这些技术的加持下,TinyLlama 训练吞吐量达到了每 A100-40G GPU 每秒 24000 个 token。例如,TinyLlama-1.1B 模型对于 300B token 仅需要 3,456 A100 GPU 小时,而 Pythia 为 4,830 小时,MPT 为 7,920 小时。这显示了该研究优化的有效性以及在大规模模型训练中节省大量时间和资源的潜力。

TinyLlama 实现了 24k tokens / 秒 / A100 的训练速度,这个速度好比用户可以在 8 个 A100 上用 32 小时训练一个具有 11 亿参数、220 亿 token 的 chinchilla-optimial 的模型。同时,这些优化也大大减少了显存占用,用户可以把 11 亿参数的模型塞入 40GB 的 GPU 里面还能同时维持 16k tokens 的 per-gpu batch size。只需要把 batch size 改小一点, 你就可以在 RTX 3090/4090 上面训练 TinyLlama。

图片

实验中,该研究主要关注具有纯解码器架构的语言模型,包含大约 10 亿个参数。具体来说,该研究将 TinyLlama 与 OPT-1.3B、Pythia-1.0B 和 Pythia-1.4B 进行了比较。

TinyLlama 在常识推理任务上的性能如下所示,可以看出 TinyLlama 在许多任务上都优于基线,并获得了最高的平均分数。

图片

此外,研究者在预训练期间跟踪了 TinyLlama 在常识推理基准上的准确率,如图 2 所示,TinyLlama 的性能随着计算资源的增加而提高,在大多数基准中超过了 Pythia-1.4B 的准确率。

表 3 表明,与现有模型相比,TinyLlama 表现出了更好的问题解决能力。

图片

手快的网友已经开始整活了:运行效果出奇得好,在 GTX3060 上运行,能以 136 tok / 秒的速度运行。

「确实是快!」

图片

小模型 LiteLlama

由于 TinyLlama 的发布,SLM(小型语言模型)开始引起广泛关注。德克萨斯工农大学的 Xiaotian Han 发布了 SLM-LiteLlama。它有 460M 参数,由 1T token 进行训练。这是对 Meta AI 的 LLaMa 2 的开源复刻版本,但模型规模显著缩小。

图片

LiteLlama-460M-1T 在 RedPajama 数据集上进行训练,并使用 GPT2Tokenizer 对文本进行 token 化。作者在 MMLU 任务上对该模型进行评估,结果如下图所示,在参数量大幅减少的情况下,LiteLlama-460M-1T 仍能取得与其他模型相媲美或更好的成绩。

图片

以下为该模型的性能表现,更详细内容请参阅:

图片

面对规模大幅缩小的 LiteLlama,有网友好奇,它是否能够在 4GB 的内存上运行。如果你也想知道,不如亲自试试看吧。

图片

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1876542.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Actor-agnostic Multi-label Action Recognition with Multi-modal Query

标题:基于多模态查询的非特定行为者多标签动作识别 源文链接:https://openaccess.thecvf.com/content/ICCV2023W/NIVT/papers/Mondal_Actor-Agnostic_Multi-Label_Action_Recognition_with_Multi-Modal_Query_ICCVW_2023_paper.pdfhttps://openaccess.t…

ZYNQ MPSOC浅说

1 MPSOC PL端 Zynq UltraScale MPSoC PL 部分等价于 FPGA。简化的 FPGA 基本结构由 6 部分组成,分别为可编程输入/输出单元、基本可编程逻辑单元、嵌入式块RAM、丰富的布线资源、底层嵌入功能单元和内嵌专用硬核等。 2 MPSOC PS端 MPSoC 实际上是一个以处理器为…

Linux Doxygen快速生成文档

此前写过一篇编写Doxygen格式的注释以用于生成文档,点击以查阅, Doxygen常用语法与字段记录,但是当时用的windows桌面版的doxygen,最近使用ubuntu编写代码想直接使用doxygen生成,故写下此博客 Doxygen Doxygen是一个用于生成软件文档的工具,它可以从代码中提取注释…

Java中System的用法

System指的是当前进程运行的操作系统,属于java.lang包下面的类 常见的用法有以下几种: 第一种简单,我们直接上第二种方法吧 currentTimeMills()用法 // 演示currentTimeMillis方法public static void main(String[] args) {// 获取当前时间所对应的毫秒…

每日一道算法题 面试题 08.08. 有重复字符串的排列组合

题目 面试题 08.08. 有重复字符串的排列组合 - 力扣(LeetCode) Python class Solution:def permutation(self, S: str) -> List[str]:# 以索引记录字符是否用过lelen(S)idx[_ for _ in range(le) ]# 组合得到的字符串combine[]*leans[]# 递归def fu…

哪吒汽车,正在等待“太乙真人”的拯救

文丨刘俊宏 在360创始人、哪吒汽车股东周鸿祎近日连续且着急的“督战”中,哪吒汽车(下简称哪吒)终究还是顶不住了。 6月26日,哪吒通过母公司合众新能源在港交所提交了IPO文件,急迫地希望成为第五家登陆港股的造车新势力…

第二十二课,列表的操作函数(二)

一,列表.append(元素) 该函数用于向列表的末尾追加一个新元素 你可以把列表想象成一个班级,列表.append(元素)则像是往班里插入一个新同学 二,列表.insert(下标, 元素) 在指定下标处,插入指定的元素 不同于列表.append(元素)函…

JAVA医院绩效考核系统源码:三级公立医院绩效考核系统源码 可源码交付,支持二开

JAVA医院绩效考核系统源码:三级公立医院绩效考核系统源码 可源码交付,支持二开 医院绩效考核系统是一个集数据采集、分析、评估、反馈于一体的信息化工具,旨在提高医疗服务质量、优化资源配置、促进医院可持续发展。以下是对医院绩效考核系统…

【React】第二个组件的一点小问题(JSX元素需要被包裹)

能看出为什么报错吗? 它告诉我们JSX元素需要被包裹,此时只需在所有元素外套一层标签(空标签也可以哦) 专业点就是要有一个根元素 注释: ctrl / 效果是 {/* */}这样 三元运算符:同CPP 循环输出数组&#x…

【wsl2】WIN11借助wsl2挂载ext4磁盘

我有一块ext4文件系统的硬盘,想要在win11上访问,我们可以通过wsl2进行挂载 wsl2的安装就跳过了,可以自行搜索安装。 安装完成后 >>> GET-CimInstance -query "SELECT * from Win32_DiskDrive"通过这个命令,可…

[算法]——堆排序(C语言实现)

简单的介绍一下用堆排序的算法对整形数据的数据进行排序。 一、堆的概念 堆是具有下列性质的完全二叉树:每个结点的值都大于或等于其左右孩子节点的值,称为大顶堆;或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。 …

ElasticSearch 和 MySQL的区别

MySQLElasticSearch 数据库(database)索引(index)数据表(table) 类型(type) 记录文档(document,json格式) 一、ES基础命令 1. ES cat查询命令 2.…

超简单的nodejs使用log4js保存日志到本地(可直接复制使用)

引入依赖 npm install log4js 新建配置文件logUtil.js const log4js require(log4js);// 日志配置 log4js.configure({appenders: {// 控制台输出consoleAppender: { type: console },// 文件输出fileAppender: {type: dateFile,filename: ./logs/default, //日志文件的存…

4 前缀和、双端队列使用:子串

很多方法需要借助数据结构来操作; 1 数组 2 栈 3 队列 4 堆 5 链表 双端队列(deque,全称为double-ended queue)是一种特殊的线性数据结构,它允许在其两端进行添加和删除操作。在Python中,双端队列由标…

keil软件的一些使用技巧

1.MDK 的 TAB 键支持块操作 也就是可以让一片代码整体右移固定的几个位,也可以通过 SHIFTTAB 键整体左移固定的几个位。 2.快速注释与快速消注释 就是先选中你要注释的代码区,然后右键,选择Advanced→Comment Selection 就可以了。 3.快速打…

FFmpeg教程-三-播放pcm文件-1

目录 一,下载SDL 二,在Qt中测试 1,在pro文件中加入路径 2,在.cpp文件中加入头文件 3,进行测试 4,显示结果 一,下载SDL 通过编程的方式播放音视频,也是需要用到这2个库: FFmpeg…

百度智能云升级:接入33个大模型,Llama 2引领创新,103个Prompt模板上线

大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的…

Mysql常用SQL:日期转换成周_DAYOFWEEK(date)

有时候需要将查询出来的日期转换成周几,Mysql本身语法就是支持这种转换的,就是DAYOFWEEK()函数 语法格式:DAYOFWEEK(date) (date:可以是指定的具体日期( 如2024-06-29 ),也可以是日期…

pc端制作一个顶部固定的菜单栏

效果 hsl颜色 hsl颜色在css中比较方便 https://www.w3school.com.cn/css/css_colors_hsl.asp 色相(hue)是色轮上从 0 到 360 的度数。0 是红色,120 是绿色,240 是蓝色。饱和度(saturation)是一个百分比值…

数据可视化在智慧园区中的重要作用

在现代智慧园区的建设和管理中,数据的作用越来越重要。智慧园区利用物联网、云计算、大数据等技术,实现了园区各类信息的实时采集和处理。数据可视化作为数据处理和展示的重要工具,为智慧园区的各个方面提供了强有力的支持。 首先&#xff0c…