PNP与NPN三极管的原理与使用方法
三极管主要的功能是电流放大和开关作用。
三极管按材料分有两种:锗管和硅管。而每一种又有NPN和PNP两种结构形式,但使用最多的是硅NPN和PNP两种三极管,两者除了电源极性不同外,其工作原理都是相同的,
NPN型三极管,由2块N型半导体和1块P型半导体组成,P型半导体在中间,两块N型半导体在两侧。
PNP型三极管,是由2块P型半导体中间夹着1块N型半导体所组成的三极管,所以称为PNP型三极管。也可以描述成,电流从发射极E流入的三极管。
1 三极管的工作原理
三极管的原理三极管有截止、放大、饱和三种工作状态。放大状态主要应用于模拟电路中,且用法和计算方法也比较复杂,我们暂时用不到。而数字电路主要使用的是三极管的开关特性,只用到了截止与饱和两种状态。
我们一般所说的普通三极管是具有电流放大作用的器件。其它的三极管也都是在这个原理基础上功能延伸。三极管的结构和符号如下图所示。
NPN和PNP主要是电流方向和电压正负不同。
这里以NPN型三极管为例来说说它的工作原理。
它就是一个以b(基极)电流Ib来驱动流过ce的电流Ic的器件,它的工作原理很像一个可控制的阀门。
左边细管子里蓝色的小水流冲动杠杆使大水管的阀门开大,就可允许较大红色的水流通过这个阀门。当蓝色水流越大,也就使大管中红色的水流更大。如果放大倍数是100,那么当蓝色小水流为1千克/小时,那么就允许大管子流过100千克/小时的水。同理,当三极管的放大倍数为100时,当Ib(基极电流)为1mA时,就允许100mA的电流通过Ice。
两种三极管的工作原理总结如下:
NPN的发射极(e)接地,集电极(c)接高电平,基极(b)接控制信号,用b-e的电流(Ib)控制c-e的电流(Ic),e极电位最低,且正常放大时通常c极电位最高,即Vc> Vb > Ve。三极管导通,电流从c极流向e极。
PNP的发射极(e)接高电平,集电极(c)接低电平,基极(b)接控制信号,用e-b的电流(Ib)控制e-c的电流(Ic),e极电位最高,且正常放大时通常c极电位最低,即Vc < Vb < Ve。三极管导通,即电流从e极流向c极。
2 三极管的使用用法
三极管的用法特点,关键点在于 b 极(基极)和 e 级(发射极)之间的电压情况,对于PNP 而言,e 极电压只要高于 b 级 0.7V 以上,这个三极管 e 级和 c 级之间就可以顺利导通。也就是说,控制端在 b 和 e 之间,被控制端是 e 和 c 之间。同理,NPN 型三极管的导通电压是 b 极比 e 极高 0.7V,总之是箭头的始端比末端高 0.7V 就可以导通三极管的 e 极和 c 极。这就是关于“导通电压顺箭头过,电压导通”的解释。
下面以一个常见的控制LED的电路为例来说明截止与饱和的工作状态。如下图所示,三极管基极通过一个 10K 的电阻接到了单片机的一个 IO口上,假定是 P1,发射极直接接到 5V 的电源上,集电极接了一个 LED ,并且串联了一个 1K 的限流电阻最终接到了电源负极 GND 上。如果 P1由我们的程序给一个高电平 1,那么基极 b 和发射极 e 都是 5V,也就是说 e到 b 不会产生一个 0.7V 的压降,这个时候,发射极和集电极也就不会导通,那么竖着看这个电路在三极管处是断开的,没有电流通过,LED也就不会亮。如果程序给 P1一个低电平 0,这时 e 极还是 5V,于是 e 和 b 之间产生了压差,三极管 e 和 b 之间也就导通了,三极管 e 和 b 之间大概有 0.7V 的压降,那还有(5-0.7)V 的电压会在电阻 R47 上。
【注】这里的P1口输出高电平是5V,不同的单片机的IO口高电平输出电压是不同的,有的单片机的IO输出是1.2V,这就需要三极管放大,以此驱动LED等工作。
这个时候,e 和 c 之间也会导通了,那么 LED 本身有 2V 的压降,三极管本身 e 和 c 之间大概有 0.2V的压降,我们忽略不计。那么在 R41 上就会有大概 3V 的压降,可以计算出来,这条支路的电流大概是 3mA,可以成功点亮 LED。
三极管开关属于电流控制开关,Ib控制Ic,与MOSFET管电压控制相反:
NPN和PNP的电流方向、电压极性相反。
1)NPN :以B→E 电流控制C→E 电流。 正常放大时, 即VC > VB > VE
2)PNP :以E→B 电流控制E→C 电流。 正常放大时, 即VE > VB > VC
总之,VB在中间,VC 和 VE 在两边。而且BJT各极的电压与电流方向是一致的,不会出现电流从低电位处流行高电位的情况。
NPN和PNP区别:箭头所指,即电流流向。如图:
PNP的反向电流可以使用I/O口直接提供,注意I/O口的最大承受电压,最好E极电压等于I/O口的高电平。对于E电压比较大的情况下可以使用文章最后的电源控制电路。
3. NPN,PNP三极管开关形式的典型接法
只有一个上拉下拉电阻的区别。如果是GND~VCC的信号驱动,左图即可。如果是强弱电流驱动,选右图。
NPN适合做低端驱动,PNP适合做高端驱动。类似的NMOS和PMOS也是如此。
前边讲过,三极管有截止,放大,饱和三个状态,截止就不用说了,只要 e 和 b 之间不导通即可。我们要让这个三极管处于饱和状态,就是我们所谓的开关特性,必须要满足一个条件。三极管都有一个放大倍数β,要想处于饱和状态,b 极电流就必须大于 e 和 c 之间电流值除以β。这个β,对于常用的三极管大概可以认为是 100。
那么上边的 R47 的阻值我们必须要来计算一下了。刚才我们算过e 和 c 之间的电流是 3mA,那么 b 极电流最小就是 3mA 除以 100 等于30uA,大概有 4.3V 电压会落在基极电阻上,那么基极电阻最大值就是 4.3V/30uA = 143K。电阻值只要比这个值小就可以,当然也不能太小,太小会导致单片机的 IO 口电流过大烧坏三极管或者单片机,IO 口输入电流最大理论值是 25mA,我推荐不要超过 6mA,我们用电压和电流算一下,就可以算出来最小电阻值。