【机器学习】基于层次的聚类方法:理论与实践

news2024/11/26 11:39:23

鑫宝Code

🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"


文章目录

  • 基于层次的聚类方法:理论与实践
    • 引言
    • 1. 层次聚类基础
      • 1.1 概述
      • 1.2 距离度量
    • 2. 算法实现步骤
      • 2.1 凝聚型聚类步骤
      • 2.2 分裂型聚类步骤
    • 3. 树状聚类图(Dendrogram)
    • 4. 优缺点
      • 4.1 优点
      • 4.2 缺点
    • 5. 实践应用
      • 5.1 生物信息学
      • 5.2 社交网络分析
      • 5.3 图像分割
    • 6. 结论

基于层次的聚类方法:理论与实践

在这里插入图片描述

引言

在数据科学与机器学习领域,聚类算法是无监督学习的重要组成部分,用于探索数据的内在结构,识别数据点之间的相似性并将其分组成有意义的簇。层次聚类(Hierarchical Clustering)作为一种经典的聚类方法,因其能够提供数据点之间层次关系的直观树状图(又称树状聚类图或 dendrogram),在生物学、社会网络分析、图像分割等多个领域有着广泛的应用。本文将深入探讨层次聚类的基本概念、算法类型、实现步骤、优缺点以及实际应用案例,帮助读者全面理解这一重要算法。

1. 层次聚类基础

1.1 概述

层次聚类算法通过逐步合并或分裂数据点(或簇)来构建一个层次结构。根据合并或分裂的方向,层次聚类可分为两种主要类型:凝聚型(Agglomerative)和分裂型(Divisive)。

  • 凝聚型聚类:从每个数据点自成一簇开始,逐步合并最相似的簇,直至所有数据点合并成一个簇或达到预设的终止条件。
  • 分裂型聚类:初始将所有数据作为一个簇,然后逐渐分裂成越来越小的簇,直到每个数据点成为一个独立的簇或满足终止条件。
    在这里插入图片描述

1.2 距离度量

层次聚类算法的关键在于如何定义数据点或簇之间的相似度或距离。常见的距离度量包括欧氏距离、曼哈顿距离、余弦相似度和Jaccard相似度等。

2. 算法实现步骤

2.1 凝聚型聚类步骤

  1. 初始化:每个数据点视为一个簇。
  2. 计算距离:根据所选距离度量,计算每对簇间的距离。
  3. 合并簇:选择距离最近的两个簇合并为一个新的簇。
  4. 更新距离:重新计算新簇与其他簇之间的距离,常用方法有单连接(最小距离)、全连接(最大距离)、平均连接(簇间所有点对距离的平均)和重心连接。
  5. 重复步骤3-4,直到满足终止条件(如指定的簇数量、距离阈值或达到最大迭代次数)。

2.2 分裂型聚类步骤

分裂型聚类的步骤与凝聚型相反,从一个包含所有数据点的大簇开始,根据某种准则(如簇内差异最大化)逐步分裂簇,直至达到预定的簇数量或分裂标准。

3. 树状聚类图(Dendrogram)

在这里插入图片描述

树状聚类图是层次聚类结果的图形化展示,横轴表示数据点或簇,纵轴表示合并或分裂时的距离。通过设定一个截断阈值,可以从dendrogram中得到一个特定数量的簇。

4. 优缺点

4.1 优点

  • 直观性:树状图提供了数据点间关系的直观展示。
  • 灵活性:用户可以根据需要选择不同的距离度量和簇合并规则。
  • 可解释性:层次结构易于理解和解释,便于发现数据的层次结构。

4.2 缺点

  • 计算复杂度:随着数据点数量的增加,计算距离矩阵的时间复杂度和空间复杂度呈平方级增长。
  • 选择难题:确定最佳的簇数目较为困难,通常依赖于主观判断或额外的评估标准。
  • 敏感性:对初始距离度量和连接准则敏感,不同的选择可能导致显著不同的聚类结果。

5. 实践应用

5.1 生物信息学

在基因表达数据分析中,层次聚类用于识别具有相似表达模式的基因或样本,帮助理解基因功能和疾病机制。

5.2 社交网络分析

通过对社交网络中的用户或社区进行层次聚类,可以发现网络中的子群结构,理解用户之间的互动模式和影响力传播路径。
在这里插入图片描述

5.3 图像分割

在计算机视觉领域,层次聚类可用于图像分割,通过将像素点根据颜色、纹理等特征聚类,实现对图像内容的有效划分。

6. 结论

层次聚类作为一种强大的无监督学习工具,为复杂数据的组织和理解提供了有效的途径。尽管存在计算复杂度高和簇数选择困难等局限性,但通过合理的参数选择和优化策略,层次聚类在众多领域展现出其独特的价值和应用潜力。随着算法理论的进一步发展和计算资源的不断进步,层次聚类方法有望在未来的数据分析和机器学习任务中扮演更加重要的角色。

End

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1875768.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

decode()方法——解码字符串

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 语法参考 解码是将字节流转换成字符串(文本),其他编码格式转成unicode。在Python中提供了decode()方法&#xff0…

GS NVMe全闪存储通过XFS文件系统助力太空科研AI处理

用户是名列全球TOP 5的太空研究机构,专为各种卫星任务和应用开发有效载荷、仪器及天基系统,在通信、广播、导航、灾害监测、气象学、海洋学、环境监测,以及自然资源测量等方面发挥重要的作用,为探索月球、火星等天体做出了重大的贡…

pafination官网自制

1.pafination.js 参考element ui 中 prev表示上一页,next为下一页 // const itemsPerPage 10; // const totalItems 30; var itemsPerPage ; var totalItems ; let currentPage 1; var pagerCount5 // 设置最大页码按钮数 var totalPages Math.ceil(totalItem…

Flutter循序渐进==>封装、继承、多态、抽象类以及属性修改

导言 新学一门编程语言,最难以理解的莫过于类了。如果类没用,也就算了,它偏偏很有用,我们必须得掌握,不然怎么好意思说自己会面向对象编程呢? 抽象类(Abstract Class)在面向对象编程中扮演着…

前后端分离项目面试总结

一:是否登录状态 服务端登录的时候,给分配一个session用于存储数据,同时将sessionID返回给浏览器,浏览器通过cookie把sessionID存储起来,下次访问时携带上,服务端就可以通过sessionID来确定用户是否登录。 …

uview文本框组件计数count报错u--textarea

报错内容: [Vue warn]: Error in render: “TypeError: Cannot read property ‘length’ of null” found in —> at uni_modules/uview-ui/components/u-textarea/u-textarea.vue at uni_modules/uview-ui/components/u–textarea/u–textarea.vue mp.runtime.…

Flutter循序渐进==>基金管理APP首页

目录 查看版本 组件 组件源码学习 做个基金APP首页源代码 效果 查看版本 组件 组件的本质就是个类。 import package:flutter/material.dart;void main() {runApp(const OurFirstApp(),); } OurFirstApp()实例化,就是给runApp用的,runApp就是运行实…

Java的NIO体系

目录 NIO1、操作系统级别下的IO模型有哪些?2、Java语言下的IO模型有哪些?3、Java的NIO应用场景?相比于IO的优势在哪?4、Java的IO、NIO、AIO 操作文件读写5、NIO的核心类 :Buffer(缓冲区)、Channel&#xff…

用GPT-4纠错GPT-4 OpenAI推出CriticGPT模型

根据OpenAI周四(6月27日)发布的新闻稿,该公司新推出了一个基于GPT-4的模型——CriticGPT,用于捕获ChatGPT代码输出中的错误。CriticGPT的作用相当于让人们用GPT-4来查找GPT-4的错误。该模型可以对ChatGPT响应结果做出批评评论&…

Echarts地图实现:山东省报考人数

Echarts地图实现:山东省报考人数 效果预览 设计思路 数据可视化:选择地图作为数据展示的方式,可以直观地展示山东省不同城市的报考人数分布。交互性:通过ECharts的交互功能,如提示框(tooltip)…

Redis 7.x 系列【11】数据类型之位图(Bitmap)

有道无术,术尚可求,有术无道,止于术。 本系列Redis 版本 7.2.5 源码地址:https://gitee.com/pearl-organization/study-redis-demo 文章目录 1. 概述2. 基本命令2.1 SETBIT2.2 GETBIT2.3 BITCOUNT2.4 BITPOS2.5 BITFIELD2.6 BITF…

二叉搜索数的最小绝对差-二叉树

需要用到中序遍历 中序遍历 94. 二叉树的中序遍历 - 力扣&#xff08;LeetCode&#xff09; 递归 class Solution { public:vector<int> inorderTraversal(TreeNode* root) {vector<int> res;inoder(root,res);return res;}void inoder(TreeNode* root , vector…

从零开始搭建spring boot多模块项目

一、搭建父级模块 1、打开idea,选择file–new–project 2、选择Spring Initializr,选择相关java版本,点击“Next” 3、填写父级模块信息 选择/填写group、artifact、type、language、packaging(后面需要修改)、java version(后面需要修改成和第2步中版本一致)。点击“…

计算机Java项目|基于SpringBoot的新闻稿件管理系统

作者主页&#xff1a;编程指南针 作者简介&#xff1a;Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、腾讯课堂常驻讲师 主要内容&#xff1a;Java项目、Python项目、前端项目、人工智能与大数据、简…

数据结构历年考研真题对应知识点(数组和特殊矩阵)

目录 3.4数组和特殊矩阵 3.4.2数组的存储结构 【二维数组按行优先存储的下标对应关系(2021)】 3.4.3特殊矩阵的压缩存储 【对称矩阵压缩存储的下标对应关系(2018、2020)】 【上三角矩阵采用行优先存储的应用(2011)】 【三对角矩阵压缩存储的下标对应关系(2016)】 3.4.…

PyTorch Tensor进阶操作指南(二):深度学习中的关键技巧

本文主要讲tensor的裁剪、索引、降维和增维 Tensor与numpy互转、Tensor运算等&#xff0c;请看这篇文章 目录 9.1、首先看torch.squeeze()函数&#xff1a; 示例9.1&#xff1a;&#xff08;基本的使用&#xff09; 小技巧1&#xff1a;如何看维数 示例9.2&#xff1a;&a…

优化数据库字段使用位运算-php语言示例

背景&#xff1a;一个会员有三个状态&#xff0c;A、B、C&#xff0c;其中一个人可以为 A、B、C、AB&#xff1b;之前数据表结构加了三个字段is_a、is_b、is_c; 本人实在不想这样粗糙的实现需求&#xff0c;遂决定用位运算优化。 上代码&#xff1a; 位运算可以用来处理状态值…

业务代码插件式开发实践

在学习编程初期&#xff0c;会接触到设计模式的概念&#xff1a;23种设计模式&#xff0c;单例模式&#xff0c;策略模式&#xff0c;… 。接触业务研发后&#xff0c;对设计模式的使用和实践有了更深的见解。 使用设计模式是目的为了更高效的支撑业务诉求&#xff0c;如何在保…

【面试干货】Object 类中的公共方法详解

【面试干货】Object 类中的公共方法详解 1、clone() 方法2、equals(Object obj) 方法3、hashCode() 方法4、getClass() 方法5、wait() 方法6、notify() 和 notifyAll() 方法 &#x1f496;The Begin&#x1f496;点点关注&#xff0c;收藏不迷路&#x1f496; 在 Java 中&#…

高频面试题基本总结回顾1(含笔试高频算法整理)

干货分享&#xff0c;感谢您的阅读&#xff01; &#xff08;暂存篇---后续会删除&#xff0c;完整版和持续更新见高频面试题基本总结回顾&#xff08;含笔试高频算法整理&#xff09;&#xff09; 备注&#xff1a;引用请标注出处&#xff0c;同时存在的问题请在相关博客留言…